forked from gyzhangqm/mesh_adaptation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpringCalculator.py
50 lines (39 loc) · 1.96 KB
/
SpringCalculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
class SpringCalculator:
def __init__(self, graph):
self.graph = graph
self.maxSpringK = 1e9
self.minSpringK = -1e9
self.meanSpringK = 1.
def recomputeNodalGradients(self):
self.recomputeTruncationData()
def recomputeTruncationData(self):
#return
springKs = np.empty(shape=(0,0))
for edge in self.graph.getEdges():
candidateSpringK = self.getUntruncatedSpringStiffness(edge[0], edge[1])
if candidateSpringK > 1e-6:
springKs = np.append(springKs, candidateSpringK)
self.maxSpringK = np.percentile(springKs, 80.)
self.minSpringK = np.percentile(springKs, 20.)
self.meanSpringK = np.mean(springKs)
def getUntruncatedSpringStiffness(self, firstNode, secondNode):
deltaGradient = np.linalg.norm(self.gradientField(firstNode.position) - self.gradientField(secondNode.position))
return deltaGradient
def getSpringStiffness(self, firstNode, secondNode):
springStiff = self.getUntruncatedSpringStiffness(firstNode, secondNode)
return self.truncateSpringStiffness(springStiff)
def truncateSpringStiffness(self, springForce):
avgK = springForce/ self.meanSpringK
avgMaxK = self.maxSpringK/self.meanSpringK
avgMinK = self.minSpringK/self.meanSpringK
return max(min(avgMaxK,avgK), avgMinK);
def gradientField(self, nodePos):
return self.intGaussian(nodePos[0], 11, 1)
def gaussian(self, x, center, stdDeviation):
return np.exp(-np.power(x-center,2.)/(2.*stdDeviation**2)) / (np.sqrt(2.*np.pi)*stdDeviation)
def diffGaussian(self, x, center, stdDeviation):
return (center-x)/(np.sqrt(2.*np.pi)*stdDeviation**3) * np.exp(-np.power(x-center,2.)/(2.*stdDeviation**2))
def intGaussian(self, x, center, stdDeviation):
import scipy.special
return 0.5 * scipy.special.erfc((center-x)/(np.sqrt(2)*stdDeviation))