@@ -75,6 +75,7 @@ is distributed under the [ISC license](LICENSE.md).
75
75
- [ Programming with transactional data structures] ( #programming-with-transactional-data-structures )
76
76
- [ The dining philosophers problem] ( #the-dining-philosophers-problem )
77
77
- [ A transactional LRU cache] ( #a-transactional-lru-cache )
78
+ - [ The sleeping barbers problem] ( #the-sleeping-barbers-problem )
78
79
- [ Programming with primitive operations] ( #programming-with-primitive-operations )
79
80
- [ Designing lock-free algorithms with k-CAS] ( #designing-lock-free-algorithms-with-k-cas )
80
81
- [ Understand performance] ( #understand-performance )
@@ -1049,6 +1050,164 @@ val a_cache : (int, string) cache =
1049
1050
As an exercise, implement an operation to ` remove ` associations from a cache and
1050
1051
an operation to change the capacity of the cache.
1051
1052
1053
+ #### The sleeping barbers problem
1054
+
1055
+ The
1056
+ [ sleeping barber problem] ( https://en.wikipedia.org/wiki/Sleeping_barber_problem )
1057
+ is another classic communication and synchronization problem. Let's write a
1058
+ solution using ** kcas** .
1059
+
1060
+ ``` ocaml
1061
+ module Barbershop : sig
1062
+ type ('barber, 'customer) t
1063
+ val create : int -> ('b, 'c) t
1064
+ val get_barber_opt : xt:'x Xt.t -> ('b, 'c) t -> 'b option
1065
+ val try_enqueue : xt:'x Xt.t -> ('b, 'c) t -> 'c -> bool
1066
+ val get_customer_opt : xt:'x Xt.t -> ('b, 'c) t -> 'c option
1067
+ val sleep : xt:'x Xt.t -> ('b, 'c) t -> 'b -> unit
1068
+ val is_closed : xt:'x Xt.t -> ('b, 'c) t -> bool
1069
+ val close : xt:'x Xt.t -> ('b, 'c) t -> unit
1070
+ end = struct
1071
+ type ('barber, 'customer) t = {
1072
+ sleeping_barbers : 'barber Queue.t;
1073
+ waiting_customers : 'customer Queue.t;
1074
+ is_closed : bool Loc.t;
1075
+ }
1076
+
1077
+ let create capacity =
1078
+ let sleeping_barbers = Queue.create ()
1079
+ and waiting_customers = Queue.create ~capacity ()
1080
+ and is_closed = Loc.make false in
1081
+ { sleeping_barbers; waiting_customers; is_closed }
1082
+
1083
+ let get_barber_opt ~xt bs =
1084
+ Queue.Xt.take_opt ~xt bs.sleeping_barbers
1085
+
1086
+ let try_enqueue ~xt bs customer =
1087
+ not (Xt.get ~xt bs.is_closed) &&
1088
+ Queue.Xt.try_add ~xt customer bs.waiting_customers
1089
+
1090
+ let get_customer_opt ~xt bs =
1091
+ Queue.Xt.take_opt ~xt bs.waiting_customers
1092
+
1093
+ let sleep ~xt bs barber =
1094
+ if not (Xt.get ~xt bs.is_closed)
1095
+ then Queue.Xt.add ~xt barber bs.sleeping_barbers
1096
+
1097
+ let is_closed ~xt bs = Xt.get ~xt bs.is_closed
1098
+
1099
+ let close ~xt bs =
1100
+ Xt.set ~xt bs.is_closed true;
1101
+ Queue.Xt.clear ~xt bs.sleeping_barbers;
1102
+ Queue.Xt.clear ~xt bs.waiting_customers
1103
+ end
1104
+ ```
1105
+
1106
+ ``` ocaml
1107
+ type customer = {
1108
+ cut_hair : 'x.xt:'x Xt.t -> unit;
1109
+ }
1110
+
1111
+ type barber = {
1112
+ wake_up : 'x.xt:'x Xt.t -> customer -> unit;
1113
+ }
1114
+ ```
1115
+
1116
+ ``` ocaml
1117
+ # let customer shop cuts =
1118
+ let clean = Mvar.create None in
1119
+ let self = { cut_hair = Mvar.Xt.put clean true } in
1120
+ while not (Xt.commit { tx = Barbershop.is_closed shop }) do
1121
+ let try_get_barber ~xt =
1122
+ match Barbershop.get_barber_opt ~xt shop with
1123
+ | None ->
1124
+ Barbershop.try_enqueue ~xt shop self
1125
+ | Some barber ->
1126
+ barber.wake_up ~xt self;
1127
+ true
1128
+ in
1129
+ if Xt.commit { tx = try_get_barber } then
1130
+ let try_get_haircut ~xt =
1131
+ not (Barbershop.is_closed ~xt shop) &&
1132
+ Mvar.Xt.take ~xt clean
1133
+ in
1134
+ if Xt.commit { tx = try_get_haircut } then
1135
+ Loc.incr cuts
1136
+ done
1137
+ val customer : (barber, customer) Barbershop.t -> int Loc.t -> unit = <fun>
1138
+ ```
1139
+
1140
+ ``` ocaml
1141
+ # let barber shop cuts =
1142
+ let customer = Mvar.create None in
1143
+ let self = { wake_up = Mvar.Xt.put customer } in
1144
+ while not (Xt.commit { tx = Barbershop.is_closed shop }) do
1145
+ let cut customer =
1146
+ Xt.commit { tx = customer.cut_hair };
1147
+ Loc.incr cuts
1148
+ in
1149
+ let try_get_customer ~xt =
1150
+ match Barbershop.get_customer_opt ~xt shop with
1151
+ | Some _ as some -> some
1152
+ | None ->
1153
+ Barbershop.sleep ~xt shop self;
1154
+ None
1155
+ in
1156
+ match Xt.commit { tx = try_get_customer } with
1157
+ | Some customer -> cut customer
1158
+ | None ->
1159
+ let sleeping ~xt =
1160
+ if Barbershop.is_closed ~xt shop then None
1161
+ else Some (Mvar.Xt.take ~xt customer)
1162
+ in
1163
+ match Xt.commit { tx = sleeping } with
1164
+ | Some customer -> cut customer
1165
+ | None -> ()
1166
+ done
1167
+ val barber : (barber, customer) Barbershop.t -> int Loc.t -> unit = <fun>
1168
+ ```
1169
+
1170
+ ``` ocaml
1171
+ # let sleeping_barbers ~barbers
1172
+ ~queue_max
1173
+ ~customers
1174
+ ~cuts_per_agent =
1175
+ assert (0 < barbers
1176
+ && 0 <= queue_max
1177
+ && 0 <= customers
1178
+ && 0 <= cuts_per_agent);
1179
+ let shop = Barbershop.create queue_max in
1180
+ let barbers = Array.init barbers @@ fun _ ->
1181
+ let cuts = Loc.make 0 in
1182
+ (cuts, Domain.spawn (fun () -> barber shop cuts))
1183
+ and customers = Array.init customers @@ fun _ ->
1184
+ let cuts = Loc.make 0 in
1185
+ (cuts, Domain.spawn (fun () -> customer shop cuts))
1186
+ in
1187
+ let agents = Array.append barbers customers in
1188
+ while agents
1189
+ |> Array.map fst
1190
+ |> Array.exists @@ fun c ->
1191
+ Loc.get c < cuts_per_agent do
1192
+ Domain.cpu_relax ()
1193
+ done;
1194
+ Xt.commit { tx = Barbershop.close shop };
1195
+ agents
1196
+ |> Array.map snd
1197
+ |> Array.iter Domain.join
1198
+ val sleeping_barbers :
1199
+ barbers:int -> queue_max:int -> customers:int -> cuts_per_agent:int -> unit =
1200
+ <fun>
1201
+ ```
1202
+
1203
+ ``` ocaml
1204
+ # sleeping_barbers ~barbers:2
1205
+ ~queue_max:1
1206
+ ~customers:4
1207
+ ~cuts_per_agent:10
1208
+ - : unit = ()
1209
+ ```
1210
+
1052
1211
### Programming with primitive operations
1053
1212
1054
1213
In addition to the transactional interface, ** Kcas** also provides the
0 commit comments