@@ -74,6 +74,7 @@ is distributed under the [ISC license](LICENSE.md).
74
74
- [ Programming with transactional data structures] ( #programming-with-transactional-data-structures )
75
75
- [ The dining philosophers problem] ( #the-dining-philosophers-problem )
76
76
- [ A transactional LRU cache] ( #a-transactional-lru-cache )
77
+ - [ The sleeping barbers problem] ( #the-sleeping-barbers-problem )
77
78
- [ Programming with primitive operations] ( #programming-with-primitive-operations )
78
79
- [ Designing lock-free algorithms with k-CAS] ( #designing-lock-free-algorithms-with-k-cas )
79
80
- [ Understand performance] ( #understand-performance )
@@ -1046,6 +1047,164 @@ val a_cache : (int, string) cache =
1046
1047
As an exercise, implement an operation to ` remove ` associations from a cache and
1047
1048
an operation to change the capacity of the cache.
1048
1049
1050
+ #### The sleeping barbers problem
1051
+
1052
+ The
1053
+ [ sleeping barber problem] ( https://en.wikipedia.org/wiki/Sleeping_barber_problem )
1054
+ is another classic communication and synchronization problem. Let's write a
1055
+ solution using ** kcas** .
1056
+
1057
+ ``` ocaml
1058
+ module Barbershop : sig
1059
+ type ('barber, 'customer) t
1060
+ val create : int -> ('b, 'c) t
1061
+ val get_barber_opt : xt:'x Xt.t -> ('b, 'c) t -> 'b option
1062
+ val try_enqueue : xt:'x Xt.t -> ('b, 'c) t -> 'c -> bool
1063
+ val get_customer_opt : xt:'x Xt.t -> ('b, 'c) t -> 'c option
1064
+ val sleep : xt:'x Xt.t -> ('b, 'c) t -> 'b -> unit
1065
+ val is_closed : xt:'x Xt.t -> ('b, 'c) t -> bool
1066
+ val close : xt:'x Xt.t -> ('b, 'c) t -> unit
1067
+ end = struct
1068
+ type ('barber, 'customer) t = {
1069
+ sleeping_barbers : 'barber Queue.t;
1070
+ waiting_customers : 'customer Queue.t;
1071
+ is_closed : bool Loc.t;
1072
+ }
1073
+
1074
+ let create capacity =
1075
+ let sleeping_barbers = Queue.create ()
1076
+ and waiting_customers = Queue.create ~capacity ()
1077
+ and is_closed = Loc.make false in
1078
+ { sleeping_barbers; waiting_customers; is_closed }
1079
+
1080
+ let get_barber_opt ~xt bs =
1081
+ Queue.Xt.take_opt ~xt bs.sleeping_barbers
1082
+
1083
+ let try_enqueue ~xt bs customer =
1084
+ not (Xt.get ~xt bs.is_closed) &&
1085
+ Queue.Xt.try_add ~xt customer bs.waiting_customers
1086
+
1087
+ let get_customer_opt ~xt bs =
1088
+ Queue.Xt.take_opt ~xt bs.waiting_customers
1089
+
1090
+ let sleep ~xt bs barber =
1091
+ if not (Xt.get ~xt bs.is_closed)
1092
+ then Queue.Xt.add ~xt barber bs.sleeping_barbers
1093
+
1094
+ let is_closed ~xt bs = Xt.get ~xt bs.is_closed
1095
+
1096
+ let close ~xt bs =
1097
+ Xt.set ~xt bs.is_closed true;
1098
+ Queue.Xt.clear ~xt bs.sleeping_barbers;
1099
+ Queue.Xt.clear ~xt bs.waiting_customers
1100
+ end
1101
+ ```
1102
+
1103
+ ``` ocaml
1104
+ type customer = {
1105
+ cut_hair : 'x.xt:'x Xt.t -> unit;
1106
+ }
1107
+
1108
+ type barber = {
1109
+ wake_up : 'x.xt:'x Xt.t -> customer -> unit;
1110
+ }
1111
+ ```
1112
+
1113
+ ``` ocaml
1114
+ # let customer shop cuts =
1115
+ let clean = Mvar.create None in
1116
+ let self = { cut_hair = Mvar.Xt.put clean true } in
1117
+ while not (Xt.commit { tx = Barbershop.is_closed shop }) do
1118
+ let try_get_barber ~xt =
1119
+ match Barbershop.get_barber_opt ~xt shop with
1120
+ | None ->
1121
+ Barbershop.try_enqueue ~xt shop self
1122
+ | Some barber ->
1123
+ barber.wake_up ~xt self;
1124
+ true
1125
+ in
1126
+ if Xt.commit { tx = try_get_barber } then
1127
+ let try_get_haircut ~xt =
1128
+ not (Barbershop.is_closed ~xt shop) &&
1129
+ Mvar.Xt.take ~xt clean
1130
+ in
1131
+ if Xt.commit { tx = try_get_haircut } then
1132
+ Loc.incr cuts
1133
+ done
1134
+ val customer : (barber, customer) Barbershop.t -> int Loc.t -> unit = <fun>
1135
+ ```
1136
+
1137
+ ``` ocaml
1138
+ # let barber shop cuts =
1139
+ let customer = Mvar.create None in
1140
+ let self = { wake_up = Mvar.Xt.put customer } in
1141
+ while not (Xt.commit { tx = Barbershop.is_closed shop }) do
1142
+ let cut customer =
1143
+ Xt.commit { tx = customer.cut_hair };
1144
+ Loc.incr cuts
1145
+ in
1146
+ let try_get_customer ~xt =
1147
+ match Barbershop.get_customer_opt ~xt shop with
1148
+ | Some _ as some -> some
1149
+ | None ->
1150
+ Barbershop.sleep ~xt shop self;
1151
+ None
1152
+ in
1153
+ match Xt.commit { tx = try_get_customer } with
1154
+ | Some customer -> cut customer
1155
+ | None ->
1156
+ let sleeping ~xt =
1157
+ if Barbershop.is_closed ~xt shop then None
1158
+ else Some (Mvar.Xt.take ~xt customer)
1159
+ in
1160
+ match Xt.commit { tx = sleeping } with
1161
+ | Some customer -> cut customer
1162
+ | None -> ()
1163
+ done
1164
+ val barber : (barber, customer) Barbershop.t -> int Loc.t -> unit = <fun>
1165
+ ```
1166
+
1167
+ ``` ocaml
1168
+ # let sleeping_barbers ~barbers
1169
+ ~queue_max
1170
+ ~customers
1171
+ ~cuts_per_agent =
1172
+ assert (0 < barbers
1173
+ && 0 <= queue_max
1174
+ && 0 <= customers
1175
+ && 0 <= cuts_per_agent);
1176
+ let shop = Barbershop.create queue_max in
1177
+ let barbers = Array.init barbers @@ fun _ ->
1178
+ let cuts = Loc.make 0 in
1179
+ (cuts, Domain.spawn (fun () -> barber shop cuts))
1180
+ and customers = Array.init customers @@ fun _ ->
1181
+ let cuts = Loc.make 0 in
1182
+ (cuts, Domain.spawn (fun () -> customer shop cuts))
1183
+ in
1184
+ let agents = Array.append barbers customers in
1185
+ while agents
1186
+ |> Array.map fst
1187
+ |> Array.exists @@ fun c ->
1188
+ Loc.get c < cuts_per_agent do
1189
+ Domain.cpu_relax ()
1190
+ done;
1191
+ Xt.commit { tx = Barbershop.close shop };
1192
+ agents
1193
+ |> Array.map snd
1194
+ |> Array.iter Domain.join
1195
+ val sleeping_barbers :
1196
+ barbers:int -> queue_max:int -> customers:int -> cuts_per_agent:int -> unit =
1197
+ <fun>
1198
+ ```
1199
+
1200
+ ``` ocaml
1201
+ # sleeping_barbers ~barbers:2
1202
+ ~queue_max:1
1203
+ ~customers:4
1204
+ ~cuts_per_agent:10
1205
+ - : unit = ()
1206
+ ```
1207
+
1049
1208
### Programming with primitive operations
1050
1209
1051
1210
In addition to the transactional interface, ** kcas** also provides the
0 commit comments