@@ -75,6 +75,7 @@ is distributed under the [ISC license](LICENSE.md).
75
75
- [ Programming with transactional data structures] ( #programming-with-transactional-data-structures )
76
76
- [ The dining philosophers problem] ( #the-dining-philosophers-problem )
77
77
- [ A transactional LRU cache] ( #a-transactional-lru-cache )
78
+ - [ The sleeping barbers problem] ( #the-sleeping-barbers-problem )
78
79
- [ Programming with primitive operations] ( #programming-with-primitive-operations )
79
80
- [ Designing lock-free algorithms with k-CAS] ( #designing-lock-free-algorithms-with-k-cas )
80
81
- [ Understand performance] ( #understand-performance )
@@ -1048,6 +1049,164 @@ val a_cache : (int, string) cache =
1048
1049
As an exercise, implement an operation to ` remove ` associations from a cache and
1049
1050
an operation to change the capacity of the cache.
1050
1051
1052
+ #### The sleeping barbers problem
1053
+
1054
+ The
1055
+ [ sleeping barber problem] ( https://en.wikipedia.org/wiki/Sleeping_barber_problem )
1056
+ is another classic communication and synchronization problem. Let's write a
1057
+ solution using ** kcas** .
1058
+
1059
+ ``` ocaml
1060
+ module Barbershop : sig
1061
+ type ('barber, 'customer) t
1062
+ val create : int -> ('b, 'c) t
1063
+ val get_barber_opt : xt:'x Xt.t -> ('b, 'c) t -> 'b option
1064
+ val try_enqueue : xt:'x Xt.t -> ('b, 'c) t -> 'c -> bool
1065
+ val get_customer_opt : xt:'x Xt.t -> ('b, 'c) t -> 'c option
1066
+ val sleep : xt:'x Xt.t -> ('b, 'c) t -> 'b -> unit
1067
+ val is_closed : xt:'x Xt.t -> ('b, 'c) t -> bool
1068
+ val close : xt:'x Xt.t -> ('b, 'c) t -> unit
1069
+ end = struct
1070
+ type ('barber, 'customer) t = {
1071
+ sleeping_barbers : 'barber Queue.t;
1072
+ waiting_customers : 'customer Queue.t;
1073
+ is_closed : bool Loc.t;
1074
+ }
1075
+
1076
+ let create capacity =
1077
+ let sleeping_barbers = Queue.create ()
1078
+ and waiting_customers = Queue.create ~capacity ()
1079
+ and is_closed = Loc.make false in
1080
+ { sleeping_barbers; waiting_customers; is_closed }
1081
+
1082
+ let get_barber_opt ~xt bs =
1083
+ Queue.Xt.take_opt ~xt bs.sleeping_barbers
1084
+
1085
+ let try_enqueue ~xt bs customer =
1086
+ not (Xt.get ~xt bs.is_closed) &&
1087
+ Queue.Xt.try_add ~xt customer bs.waiting_customers
1088
+
1089
+ let get_customer_opt ~xt bs =
1090
+ Queue.Xt.take_opt ~xt bs.waiting_customers
1091
+
1092
+ let sleep ~xt bs barber =
1093
+ if not (Xt.get ~xt bs.is_closed)
1094
+ then Queue.Xt.add ~xt barber bs.sleeping_barbers
1095
+
1096
+ let is_closed ~xt bs = Xt.get ~xt bs.is_closed
1097
+
1098
+ let close ~xt bs =
1099
+ Xt.set ~xt bs.is_closed true;
1100
+ Queue.Xt.clear ~xt bs.sleeping_barbers;
1101
+ Queue.Xt.clear ~xt bs.waiting_customers
1102
+ end
1103
+ ```
1104
+
1105
+ ``` ocaml
1106
+ type customer = {
1107
+ cut_hair : 'x.xt:'x Xt.t -> unit;
1108
+ }
1109
+
1110
+ type barber = {
1111
+ wake_up : 'x.xt:'x Xt.t -> customer -> unit;
1112
+ }
1113
+ ```
1114
+
1115
+ ``` ocaml
1116
+ # let customer shop cuts =
1117
+ let clean = Mvar.create None in
1118
+ let self = { cut_hair = Mvar.Xt.put clean true } in
1119
+ while not (Xt.commit { tx = Barbershop.is_closed shop }) do
1120
+ let try_get_barber ~xt =
1121
+ match Barbershop.get_barber_opt ~xt shop with
1122
+ | None ->
1123
+ Barbershop.try_enqueue ~xt shop self
1124
+ | Some barber ->
1125
+ barber.wake_up ~xt self;
1126
+ true
1127
+ in
1128
+ if Xt.commit { tx = try_get_barber } then
1129
+ let try_get_haircut ~xt =
1130
+ not (Barbershop.is_closed ~xt shop) &&
1131
+ Mvar.Xt.take ~xt clean
1132
+ in
1133
+ if Xt.commit { tx = try_get_haircut } then
1134
+ Loc.incr cuts
1135
+ done
1136
+ val customer : (barber, customer) Barbershop.t -> int Loc.t -> unit = <fun>
1137
+ ```
1138
+
1139
+ ``` ocaml
1140
+ # let barber shop cuts =
1141
+ let customer = Mvar.create None in
1142
+ let self = { wake_up = Mvar.Xt.put customer } in
1143
+ while not (Xt.commit { tx = Barbershop.is_closed shop }) do
1144
+ let cut customer =
1145
+ Xt.commit { tx = customer.cut_hair };
1146
+ Loc.incr cuts
1147
+ in
1148
+ let try_get_customer ~xt =
1149
+ match Barbershop.get_customer_opt ~xt shop with
1150
+ | Some _ as some -> some
1151
+ | None ->
1152
+ Barbershop.sleep ~xt shop self;
1153
+ None
1154
+ in
1155
+ match Xt.commit { tx = try_get_customer } with
1156
+ | Some customer -> cut customer
1157
+ | None ->
1158
+ let sleeping ~xt =
1159
+ if Barbershop.is_closed ~xt shop then None
1160
+ else Some (Mvar.Xt.take ~xt customer)
1161
+ in
1162
+ match Xt.commit { tx = sleeping } with
1163
+ | Some customer -> cut customer
1164
+ | None -> ()
1165
+ done
1166
+ val barber : (barber, customer) Barbershop.t -> int Loc.t -> unit = <fun>
1167
+ ```
1168
+
1169
+ ``` ocaml
1170
+ # let sleeping_barbers ~barbers
1171
+ ~queue_max
1172
+ ~customers
1173
+ ~cuts_per_agent =
1174
+ assert (0 < barbers
1175
+ && 0 <= queue_max
1176
+ && 0 <= customers
1177
+ && 0 <= cuts_per_agent);
1178
+ let shop = Barbershop.create queue_max in
1179
+ let barbers = Array.init barbers @@ fun _ ->
1180
+ let cuts = Loc.make 0 in
1181
+ (cuts, Domain.spawn (fun () -> barber shop cuts))
1182
+ and customers = Array.init customers @@ fun _ ->
1183
+ let cuts = Loc.make 0 in
1184
+ (cuts, Domain.spawn (fun () -> customer shop cuts))
1185
+ in
1186
+ let agents = Array.append barbers customers in
1187
+ while agents
1188
+ |> Array.map fst
1189
+ |> Array.exists @@ fun c ->
1190
+ Loc.get c < cuts_per_agent do
1191
+ Domain.cpu_relax ()
1192
+ done;
1193
+ Xt.commit { tx = Barbershop.close shop };
1194
+ agents
1195
+ |> Array.map snd
1196
+ |> Array.iter Domain.join
1197
+ val sleeping_barbers :
1198
+ barbers:int -> queue_max:int -> customers:int -> cuts_per_agent:int -> unit =
1199
+ <fun>
1200
+ ```
1201
+
1202
+ ``` ocaml
1203
+ # sleeping_barbers ~barbers:2
1204
+ ~queue_max:1
1205
+ ~customers:4
1206
+ ~cuts_per_agent:10
1207
+ - : unit = ()
1208
+ ```
1209
+
1051
1210
### Programming with primitive operations
1052
1211
1053
1212
In addition to the transactional interface, ** kcas** also provides the
0 commit comments