forked from vipints/converters
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiprocessing_mapreduce.py
54 lines (42 loc) · 1.89 KB
/
multiprocessing_mapreduce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import collections
import itertools
import multiprocessing
class MapReduce(object):
def __init__(self, map_func, reduce_func, num_workers=None):
"""
map_func
Function to map inputs to intermediate data. Takes as
argument one input value and returns a tuple with the key
and a value to be reduced.
reduce_func
Function to reduce partitioned version of intermediate data
to final output. Takes as argument a key as produced by
map_func and a sequence of the values associated with that
key.
num_workers
The number of workers to create in the pool. Defaults to the
number of CPUs available on the current host.
"""
self.map_func = map_func
self.reduce_func = reduce_func
self.pool = multiprocessing.Pool(num_workers)
def partition(self, mapped_values):
"""Organize the mapped values by their key.
Returns an unsorted sequence of tuples with a key and a sequence of values.
"""
partitioned_data = collections.defaultdict(list)
for key, value in mapped_values:
partitioned_data[key].append(value)
return partitioned_data.items()
def __call__(self, inputs, chunksize=1):
"""Process the inputs through the map and reduce functions given.
inputs
An iterable containing the input data to be processed.
chunksize=1
The portion of the input data to hand to each worker. This
can be used to tune performance during the mapping phase.
"""
map_responses = self.pool.map(self.map_func, inputs, chunksize=chunksize)
partitioned_data = self.partition(itertools.chain(*map_responses))
reduced_values = self.pool.map(self.reduce_func, partitioned_data)
return reduced_values