This repository was archived by the owner on May 16, 2021. It is now read-only.
forked from zhuli19901106/leetcode-zhuli
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclosest-binary-search-tree-value-ii_1_AC.cpp
169 lines (148 loc) · 3.59 KB
/
closest-binary-search-tree-value-ii_1_AC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// 1AC, think about iterator and reverse iterator.
// The difficult part is to locate the target position in O(log(n)) time.
// This is what we call OOP.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
using std::abs;
using std::reverse;
using std::stack;
using std::vector;
class TreeIterator {
public:
TreeIterator(TreeNode *root) {
TreeNode *p = root;
while (p != NULL) {
st.push(p);
p = p->left;
}
}
TreeIterator(TreeNode *root, double target) {
TreeNode *p = root;
while (p != NULL) {
if (p->val < target) {
p = p->right;
} else {
st.push(p);
p = p->left;
}
}
}
bool hasNext() {
return !st.empty();
}
int next() {
TreeNode *p = st.top();
st.pop();
TreeNode *q = p->right;
while (q != NULL) {
st.push(q);
q = q->left;
}
return p->val;
}
int peek() {
return st.top()->val;
}
~TreeIterator() {
while (!st.empty()) {
st.pop();
}
}
private:
stack<TreeNode *> st;
};
class TreeReverseIterator {
public:
TreeReverseIterator(TreeNode *root) {
TreeNode *p = root;
while (p != NULL) {
st.push(p);
p = p->right;
}
}
TreeReverseIterator(TreeNode *root, double target) {
TreeNode *p = root;
while (p != NULL) {
if (p->val > target) {
p = p->left;
} else {
st.push(p);
p = p->right;
}
}
}
bool hasNext() {
return !st.empty();
}
int next() {
TreeNode *p = st.top();
st.pop();
TreeNode *q = p->left;
while (q != NULL) {
st.push(q);
q = q->right;
}
return p->val;
}
int peek() {
return st.top()->val;
}
~TreeReverseIterator() {
while (!st.empty()) {
st.pop();
}
}
private:
stack<TreeNode *> st;
};
class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
TreeIterator it1(root, target);
TreeReverseIterator it2(root, target);
if (it1.hasNext() && it2.hasNext() && it1.peek() == it2.peek()) {
(void)it1.next();
}
vector<int> v1, v2;
vector<int> res;
int i;
int c1, c2;
for (i = 0; i < k; ++i) {
if (!it1.hasNext() && !it2.hasNext()) {
break;
}
if (!it1.hasNext()) {
v2.push_back(it2.next());
continue;
}
if (!it2.hasNext()) {
v1.push_back(it1.next());
continue;
}
c1 = it1.peek();
c2 = it2.peek();
if (abs(c1 - target) < abs(c2 - target)) {
v1.push_back(it1.next());
} else {
v2.push_back(it2.next());
}
}
reverse(v1.begin(), v1.end());
res.insert(res.end(), v1.begin(), v1.end());
res.insert(res.end(), v2.begin(), v2.end());
v1.clear();
v2.clear();
return res;
}
};