-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslides.tex
377 lines (304 loc) · 11.7 KB
/
slides.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
\documentclass[11pt,xcolor=svgnames,usenames,dvipsnames]{beamer}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Packages
\usepackage{xcolor}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{scalefnt}
\usepackage{appendixnumberbeamer}
\usepackage{booktabs}
\usepackage{upquote}
\usepackage{wasysym}
\usepackage{mathtools}
\usepackage{algorithm}
\usepackage[vlined,algo2e,algoruled]{algorithm2e}
\usepackage{subcaption}
\captionsetup{compatibility=false}
\usepackage{multirow}
\usepackage{scalefnt}
\usepackage{tikz,pgfplots,pgfplotstable}
\usetikzlibrary{positioning,fit,calc}
\usepgfplotslibrary{groupplots}
\captionsetup[subfloat]{font=footnotesize,position=top}
\captionsetup{font=footnotesize,textfont=it}
\captionsetup{labelfont=sc,labelsep=period}
\usepackage{graphicx}
\usepackage{booktabs}
\usepackage{listings}
\lstset{%
language=matlab,
showstringspaces=false,
columns=flexible,
keepspaces = true,
basicstyle={\small\ttfamily},
numbers=none,
numberstyle=\tiny\color{gray},
keywordstyle=\color{blue},
commentstyle=\color{darkgreen},
stringstyle=\color{mauve},
breakatwhitespace=true,
literate={×}{\ensuremath{\mskip-1.5mu \times\mskip-1.5mu}}1,
deletekeywords={beta,upper,lower,sign}
}
\definecolor{gray}{rgb}{0.5,0.5,0.5}
\definecolor{mauve}{rgb}{0.58,0,0.82}
\definecolor{lightgrey}{rgb}{0.9,0.9,0.9}
\definecolor{darkgreen}{rgb}{0,0.6,0}
\usepackage[font=scriptsize,labelfont=bf]{caption}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Definitions
\def\R{\mathbb{R}}
\def\doublehalf{double-fp16}
\newcommand{\half}{fp16}
\newcommand{\bfloat}{bf16}
\newcommand{\tfloat}{tf32}
\newcommand{\single}{fp32}
\newcommand{\double}{fp64}
\newcommand{\tflops}{T\flops}
\newcommand{\fl}[1]{\ensuremath{\mathrm{fl}(#1)}}
\newcommand{\flp}[2]{\ensuremath{\mathrm{fl}_{#1}}(#2)}
\usepackage{amssymb,mathtools}
\DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Theme configuration
\usetheme{Madrid}
\usecolortheme{whale}
\setbeamertemplate{navigation symbols}{}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Title page
\title[Shortened title of the talk]{Title of the Talk}
\subtitle{}
\author[Author's surname] % (optional, for multiple authors)
{Author's full name}
\institute[Univ. Leeds]
{
{\color{blue}
School of Computer Science,
University of Leeds,
Leeds, UK
}
}
\date[March 2025]{Event name\\
{\color{Blue} Location, Mar. 27, 2025}}
\titlegraphic{
\begin{tikzpicture}[overlay,remember picture]
\node[left=0.2cm] at (current page.34){
\includegraphics[width=1in]{images/uollogo}
};
\end{tikzpicture}
\includegraphics[width=1.2in]{images/bragg}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Main slides
\begin{document}
\frame{\titlepage}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Example diagram in PGFPlots with text underneath}
\input{diagrams/top500-statistics}
Devices counted: P100, V100, A100, H100, MI210, MI250X, MI300X, Intel Data Center GPU, from \url{https://www.top500.org}.\\~\\
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Example slide with a citation and example box}
In the level-index representation {\color{blue} [Clenshaw and Olver, 1984]} $x \in \mathbb{R}$ is represented as
$$
x = \pm e^{e^{.^{.^{.^{e^{f}}}}}}
$$
where the process of exponentiation is done $l$ times. Here $f \in [0,1)$.\\~\\
When $l=0$ we set $x=f$.\\~\\
\begin{example}
$0.5=f=0.5$ (level 0) \\
$1=e^0$ (level 1) \\
$1.5 \approx e^{0.4}$ (level 1) \\
$2 \approx e^{0.69}$ (level 1) \\
$3 \approx e^{e^{0.09}}$ (level is now 2)
\end{example}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Example slide with aligned equations}
Level 0 in LI is a special case that was removed in symmetric level-index system {\color{blue} [Clenshaw and Turner, 1988]}.\\~\\
In SLI a number $x \in \mathbb{R}$ has the form
$$
x=s(x)\phi (\zeta)^{r(x)},
$$
where $s(x)=\pm 1$ is the sign, $r(x)=\pm 1$ is the reciprocal sign defined by
\begin{align*}
r(x)=
\begin{cases}
+1, & \text{if } |x| \geq 1, \\
-1, & \text{if } |x| < 1,
\end{cases}
\end{align*}
and $\phi(\zeta)$ is the standard LI generalized exponential with $\zeta=l+f$:
\begin{align*}
\phi(\zeta)=
\begin{cases}
\zeta, & \text{if } 0 \leq \zeta < 1, \\
e^{\phi(\zeta-1)}, & \text{if } \zeta \geq 1.
\end{cases}
\end{align*}
Allows to preserve relative precision of numbers below $1$.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Example slide with alertblock box and nested bullet points}
\begin{alertblock}{Notation}
With sli-$k$.$p$ we refer to a SLI encoding with a $k$-bit level and a $p$-bit index. Total width of the encoding is $k+p+2$.
\end{alertblock}
\begin{itemize}
\item {\color{blue} [Olver, ARITH'87]} proves \emph{closure} properties of SLI and shows that 3 bits for the level is enough for practical purposes.
\item {\color{blue}[Olver and Turner, ARITH'87]} show table-based parallel algorithms for basic operations. Fast but big circuits.
\item {\color{blue} [Turner, ARITH'89]}
\begin{itemize}
\item Simulation of sli-3.27 in Turbo Pascal;
\item implements scalar, vector, polynomial ops;
\item sli-integer mixed-format ops.
\end{itemize}
\item {\color{blue} [Kwak and Swartzlander, 1998]} show how to implement LI in hardware by using CORDIC. From $>$11K Full Adders down to $\sim$3800.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Example slide with a picture drawn in TikZ}
\begin{figure}
\centering
\footnotesize
\begin{tikzpicture}
\node (s) [rectangle,draw, minimum height = 1cm, minimum width = 0.5cm] {$s$};
\node (r) [rectangle,draw, minimum height = 1cm, minimum width = 0.5cm, right=-\the\pgflinewidth of s.east] {$r$};
\node (l) [rectangle,draw, minimum height = 1cm, minimum width = 1.5cm, right=-\the\pgflinewidth of r.east] {$l$};
\node (f) [rectangle,draw, minimum height = 1cm, minimum width = 5.5cm, right=-\the\pgflinewidth of l.east] {$f$};
\draw[decorate,decoration={brace}, rotate=180] ($(s)+(-0.2,0.6)$) -- ($(s)+(0.2,0.6)$)
node[below=2pt, pos=0.5]{$1$};
\draw[decorate,decoration={brace}, rotate=180] ($(r)+(-0.2,0.6)$) -- ($(r)+(0.2,0.6)$)
node[below=2pt, pos=0.5]{$1$};
\draw[decorate,decoration={brace}, rotate=180] ($(l)+(-0.6,0.6)$) -- ($(l)+(0.6,0.6)$)
node[below=2pt, pos=0.5]{$3$};
\draw[decorate,decoration={brace}, rotate=180] ($(f)+(-2.7,0.6)$) -- ($(f)+(2.7,0.6)$)
node[below=2pt, pos=0.5]{$11$ bits};
\end{tikzpicture}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Example slide with three pictures drawn in TikZ}
\begin{figure}
\centering
\footnotesize
\begin{tabular}{c}
\begin{tikzpicture}
\node (e) [rectangle,draw, minimum height = 1cm, minimum width = 1.5cm] {$E$};
\node (m) [rectangle,draw, minimum height = 1cm, minimum width = 1cm, right=-\the\pgflinewidth of e.east] {$M$};
\draw[decorate,decoration={brace}, rotate=180] ($(e)+(-0.6,0.6)$) -- ($(e)+(0.6,0.6)$)
node[below=2pt, pos=0.5]{$3$};
\draw[decorate,decoration={brace}, rotate=180] ($(m)+(-0.4,0.6)$) -- ($(m)+(0.4,0.6)$)
node[below=2pt, pos=0.5]{$2$ bits};
\end{tikzpicture} \\
\end{tabular}
\begin{tabular}{cc}
\begin{tikzpicture}
\node (r) [rectangle,draw, minimum height = 1cm, minimum width = 0.5cm] {$r$};
\node (l) [rectangle,draw, minimum height = 1cm, minimum width = 0.5cm, right=-\the\pgflinewidth of r.east] {$l$};
\node (f) [rectangle,draw, minimum height = 1cm, minimum width = 2cm, right=-\the\pgflinewidth of l.east] {$f$};
\draw[decorate,decoration={brace}, rotate=180] ($(r)+(-0.2,0.6)$) -- ($(r)+(0.2,0.6)$)
node[below=2pt, pos=0.5]{$1$};
\draw[decorate,decoration={brace}, rotate=180] ($(l)+(-0.2,0.6)$) -- ($(l)+(0.2,0.6)$)
node[below=2pt, pos=0.5]{$1$};
\draw[decorate,decoration={brace}, rotate=180] ($(f)+(-0.8,0.6)$) -- ($(f)+(0.8,0.6)$)
node[below=2pt, pos=0.5]{$3$ bits};
\end{tikzpicture} &
\begin{tikzpicture}
\node (r) [rectangle,draw, minimum height = 1cm, minimum width = 0.5cm] {$r$};
\node (l) [rectangle,draw, minimum height = 1cm, minimum width = 1cm, right=-\the\pgflinewidth of r.east] {$l$};
\node (f) [rectangle,draw, minimum height = 1cm, minimum width = 1.5cm, right=-\the\pgflinewidth of l.east] {$f$};
\draw[decorate,decoration={brace}, rotate=180] ($(r)+(-0.2,0.6)$) -- ($(r)+(0.2,0.6)$)
node[below=2pt, pos=0.5]{$1$};
\draw[decorate,decoration={brace}, rotate=180] ($(l)+(-0.4,0.6)$) -- ($(l)+(0.4,0.6)$)
node[below=2pt, pos=0.5]{$2$};
\draw[decorate,decoration={brace}, rotate=180] ($(f)+(-0.6,0.6)$) -- ($(f)+(0.6,0.6)$)
node[below=2pt, pos=0.5]{$2$ bits};
\end{tikzpicture}
\end{tabular}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Example slide with a table}
{\footnotesize
\begin{table}
\centering
\begin{tabular}{llrr}
\toprule
& FP & sli-1.3 & sli-2.2 \\
\midrule
$00000$ & $0$ & $Zero$ & $Zero$ \\
$00001$ & $0.0625$ & $(e^{0.125})^{-1}\approx 0.8825$ & $(e^{0.25})^{-1}\approx 0.7788$ \\
$00010$ & $0.125$ & $(e^{0.25})^{-1}\approx 0.7788$ & $(e^{0.5})^{-1}\approx 0.6065$ \\
$00011$ & $0.1875$ & $\sim 0.6873$ & $\sim 0.4724$ \\
$00100$ & $0.25$ & $\sim 0.6065$ & $(e^{e^{0}})^{-1}\approx 0.3679$ \\
$00101$ & $0.3125$ & $\sim 0.5353$ & $\sim 0.2769$ \\
$00110$ & $0.375$ & $\sim 0.4724$ & $\sim 0.1923$ \\
$00111$ & $0.4375$ & $\sim 0.4169$ & $\sim 0.1204$ \\
$01000$ & $0.5$ & $(e^{e^{0}})^{-1}\approx 0.3679$ & $(e^{e^{e^{0}}})^{-1}\approx 0.06599$ \\
$01001$ & $0.625$ & $(e^{e^{0.125}})^{-1}\approx 0.322$ & $\sim 0.02702$ \\
$01010$ & $0.75$ & $(e^{e^{0.25}})^{-1}\approx 0.2769$ & $\sim 0.0055$ \\
$01011$ & $0.875$ & $\sim 0.2334$ & $\sim 2.4 \times 10^{-4}$ \\
$01100$ & $1$ & $\sim 0.1923$ & $(e^{e^{e^{e^{0}}}})^{-1}\approx 2.6 \times 10^{-7}$ \\
$01101$ & $1.25$ & $\sim 0.1544$ & $\sim 8.4 \times 10^{-17}$ \\
$01110$ & $1.5$ & $\sim 0.1204$ & $\sim 1.7 \times 10^{-79}$\\
$01111$ & $1.75$ & $\sim 0.0908$ & $\sim 10^{-1758}$\\
\bottomrule
\end{tabular}
\label{table:toy-system-values}
\end{table}}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[fragile]{Example slide with MATLAB code}
\begin{lstlisting}
>> x = sli.zeros(2,3,2,12);
>> [rows, cols] = size(x);
>> for i = 1:rows
for j = 1:cols
x(i,j) = x(i,j).set_val(2);
end
end
>> y = x*x';
>> y(1,1)
ans =
sli with properties:
level_bits: 2
index_bits: 12
sign: 0
reciprocal: 1
level: 2
index: 0.910400390625000
value: 12.004930399103673
\end{lstlisting}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Example slide with PGFPlots diagrams}
Round $1000$ binary64 values around 0 with steps of $10^{-5}$.
\input{diagrams/representation-binary16.tex}
Take bfloat16 arithmetic and steps of $10^{-42}$.
\input{diagrams/representation-bfloat16.tex}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Example slide with equations and a diagram}
Compute the backward error of $y=Ax$ with $x \in (0,1)^n$: $\max_i\frac{
|\widehat{y}-y|_i}{(|A||x|)_i}$.\\~\\
\input{diagrams/matvec-binary16.tex}
\end{frame}
\appendix
\begin{frame}[allowframebreaks]{References}
\def\newblock{}
\begin{thebibliography}{10}
\bibitem{clol84}
{C.~W.~Clenshaw and F.~W.~Olver}
\newblock Beyond floating point
\newblock J. ACM., 31:2. Apr., 1984.
\bibitem{cltu88}
{C.~W.~Clenshaw and P.~R.~Turner}
\newblock The symmetric level-index system
\newblock IMA J. Numer. Anal., 8:4. Oct., 1988.
\bibitem{olve87}
{F.~W.~Olver}
\newblock A closed computer arithmetic
\newblock IEEE 8th Symp. Comp. Arith., May 1987.
\end{thebibliography}
\end{frame}
\end{document}