Skip to content

Commit bfce212

Browse files
committed
Comment out unused imports.
1 parent 3b558e0 commit bfce212

File tree

6 files changed

+25
-18
lines changed

6 files changed

+25
-18
lines changed

src/diffusers/models/attention_processor.py

+10-8
Original file line numberDiff line numberDiff line change
@@ -19,13 +19,14 @@
1919
import torch
2020
import torch.nn.functional as F
2121
from torch import nn
22+
import numpy as np
2223

2324
from ..image_processor import IPAdapterMaskProcessor
2425
from ..utils import deprecate, logging
2526
from ..utils.import_utils import is_torch_npu_available, is_xformers_available
2627
from ..utils.torch_utils import maybe_allow_in_graph
2728
from .lora import LoRALinearLayer
28-
from shark_turbine.ops.iree import trace_tensor
29+
#from shark_turbine.ops.iree import trace_tensor
2930

3031

3132
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@@ -1116,10 +1117,13 @@ def __call__(
11161117
batch_size = encoder_hidden_states.shape[0]
11171118

11181119
# `sample` projections.
1120+
#trace_tensor("hidden_states", hidden_states[0,0,0])
11191121
query = attn.to_q(hidden_states)
11201122
key = attn.to_k(hidden_states)
11211123
value = attn.to_v(hidden_states)
1122-
1124+
#trace_tensor("query_pre_proj", query[0,0,0])
1125+
#trace_tensor("key_pre_proj", key[0,0,0])
1126+
#trace_tensor("value_pre_proj", value[0,0,0])
11231127
# `context` projections.
11241128
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
11251129
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
@@ -1129,20 +1133,18 @@ def __call__(
11291133
query = torch.cat([query, encoder_hidden_states_query_proj], dim=1)
11301134
key = torch.cat([key, encoder_hidden_states_key_proj], dim=1)
11311135
value = torch.cat([value, encoder_hidden_states_value_proj], dim=1)
1132-
11331136
inner_dim = key.shape[-1]
11341137
head_dim = inner_dim // attn.heads
11351138
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
11361139
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
11371140
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
1138-
# trace_tensor("query", query[0,0,0])
1139-
# trace_tensor("key", key[0,0,0])
1140-
# trace_tensor("value", value[0,0,0])
1141+
# np.save("q.npy", query.detach().cpu().numpy())
1142+
# np.save("k.npy", key.detach().cpu().numpy())
1143+
# np.save("v.npy", value.detach().cpu().numpy())
11411144
hidden_states = hidden_states = F.scaled_dot_product_attention(
11421145
query, key, value, dropout_p=0.0, is_causal=False
11431146
)
11441147
#trace_tensor("attn_out", hidden_states[0,0,0,0])
1145-
11461148
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
11471149
hidden_states = hidden_states.to(query.dtype)
11481150

@@ -1152,7 +1154,7 @@ def __call__(
11521154
hidden_states[:, residual.shape[1] :],
11531155
)
11541156
hidden_states_cl = hidden_states.clone()
1155-
trace_tensor("attn_out", hidden_states_cl[0,0,0])
1157+
#trace_tensor("attn_out", hidden_states_cl[0,0,0])
11561158
# linear proj
11571159
hidden_states = attn.to_out[0](hidden_states_cl)
11581160
# dropout

src/diffusers/models/embeddings.py

+2
Original file line numberDiff line numberDiff line change
@@ -23,6 +23,8 @@
2323
from .activations import FP32SiLU, get_activation
2424
from .attention_processor import Attention
2525

26+
from shark_turbine.ops.iree import trace_tensor
27+
2628

2729
def get_timestep_embedding(
2830
timesteps: torch.Tensor,

src/diffusers/models/transformers/transformer_sd3.py

+7-7
Original file line numberDiff line numberDiff line change
@@ -278,13 +278,13 @@ def forward(
278278
else:
279279
lora_scale = 1.0
280280

281-
# if USE_PEFT_BACKEND:
282-
# # weight the lora layers by setting `lora_scale` for each PEFT layer
283-
# scale_lora_layers(self, lora_scale)
284-
# else:
285-
# logger.warning(
286-
# "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
287-
# )
281+
if USE_PEFT_BACKEND:
282+
# weight the lora layers by setting `lora_scale` for each PEFT layer
283+
scale_lora_layers(self, lora_scale)
284+
else:
285+
logger.warning(
286+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
287+
)
288288

289289
height, width = hidden_states.shape[-2:]
290290

src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py

+4-1
Original file line numberDiff line numberDiff line change
@@ -795,7 +795,8 @@ def __call__(
795795
if self.do_classifier_free_guidance:
796796
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
797797
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
798-
798+
print("prompt_embeds", prompt_embeds)
799+
print("pooled_prompt_embeds", pooled_prompt_embeds)
799800
# 4. Prepare timesteps
800801
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
801802
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
@@ -813,6 +814,8 @@ def __call__(
813814
generator,
814815
latents,
815816
)
817+
print(latents)
818+
print(timesteps)
816819

817820
# 6. Denoising loop
818821
with self.progress_bar(total=num_inference_steps) as progress_bar:

src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@
2323
from ..utils import BaseOutput, logging
2424
from ..utils.torch_utils import randn_tensor
2525
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
26-
from shark_turbine.ops.iree import trace_tensor
26+
#from shark_turbine.ops.iree import trace_tensor
2727

2828
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
2929

src/diffusers/schedulers/scheduling_pndm.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@
2222

2323
from ..configuration_utils import ConfigMixin, register_to_config
2424
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
25-
from shark_turbine.ops.iree import trace_tensor
25+
#from shark_turbine.ops.iree import trace_tensor
2626

2727
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
2828
def betas_for_alpha_bar(

0 commit comments

Comments
 (0)