-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDetector.dart
318 lines (291 loc) · 11.5 KB
/
Detector.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import 'package:flutter/material.dart';
import 'BitMatrix.dart';
import 'PerspectiveTransform.dart';
// Ported from com.google.zxing.qrcode.detector
/// <p>Encapsulates logic that can detect a QR Code in an image, even if the QR Code
/// is rotated or skewed, or partially obscured.</p>
///
/// @author Sean Owen
class Detector {
BitMatrix bitMatrix;
int computedDimension;
PerspectiveTransform createTransform(Offset topLeft,
Offset topRight,
Offset bottomLeft,
Offset alignmentPattern,) {
computedDimension = computeDimension(topLeft, topRight, bottomLeft, calculateModuleSize(topLeft, topRight, bottomLeft));
double dimMinusThree = computedDimension - 3.5;
double bottomRightX;
double bottomRightY;
double sourceBottomRightX;
double sourceBottomRightY;
if (alignmentPattern != null) {
bottomRightX = alignmentPattern.dx;
bottomRightY = alignmentPattern.dy;
sourceBottomRightX = dimMinusThree - 3.0;
sourceBottomRightY = sourceBottomRightX;
} else {
// Don't have an alignment pattern, just make up the bottom-right point
bottomRightX = (topRight.dx - topLeft.dx) + bottomLeft.dx;
bottomRightY = (topRight.dy - topLeft.dy) + bottomLeft.dy;
sourceBottomRightX = dimMinusThree;
sourceBottomRightY = dimMinusThree;
}
return PerspectiveTransform.quadrilateralToQuadrilateral(
3.5,
3.5,
dimMinusThree,
3.5,
sourceBottomRightX,
sourceBottomRightY,
3.5,
dimMinusThree,
topLeft.dx,
topLeft.dy,
topRight.dx,
topRight.dy,
bottomRightX,
bottomRightY,
bottomLeft.dx,
bottomLeft.dy);
}
PerspectiveTransform createTransformCorners(Offset topLeft,
Offset topRight,
Offset bottomLeft,
Offset alignmentPattern,) {
computedDimension = computeDimension(topLeft, topRight, bottomLeft, calculateModuleSize(topLeft, topRight, bottomLeft));
double bottomRightX;
double bottomRightY;
double sourceBottomRightX;
double sourceBottomRightY;
if (alignmentPattern != null) {
bottomRightX = alignmentPattern.dx;
bottomRightY = alignmentPattern.dy;
sourceBottomRightX = computedDimension - 3.0;
sourceBottomRightY = sourceBottomRightX;
} else {
// Don't have an alignment pattern, just make up the bottom-right point
bottomRightX = (topRight.dx - topLeft.dx) + bottomLeft.dx;
bottomRightY = (topRight.dy - topLeft.dy) + bottomLeft.dy;
sourceBottomRightX = computedDimension.toDouble();
sourceBottomRightY = computedDimension.toDouble();
}
return PerspectiveTransform.quadrilateralToQuadrilateral(
0,
0,
computedDimension.toDouble(),
0,
sourceBottomRightX,
sourceBottomRightY,
0,
computedDimension.toDouble(),
topLeft.dx,
topLeft.dy,
topRight.dx,
topRight.dy,
bottomRightX,
bottomRightY,
bottomLeft.dx,
bottomLeft.dy);
}
PerspectiveTransform createInverseTransform(Offset topLeft,
Offset topRight,
Offset bottomLeft,
Offset alignmentPattern,) {
computedDimension = computeDimension(topLeft, topRight, bottomLeft, calculateModuleSize(topLeft, topRight, bottomLeft));
double dimMinusThree = computedDimension - 3.5;
double bottomRightX;
double bottomRightY;
double sourceBottomRightX;
double sourceBottomRightY;
if (alignmentPattern != null) {
bottomRightX = alignmentPattern.dx;
bottomRightY = alignmentPattern.dy;
sourceBottomRightX = dimMinusThree - 3.0;
sourceBottomRightY = sourceBottomRightX;
} else {
// Don't have an alignment pattern, just make up the bottom-right point
bottomRightX = (topRight.dx - topLeft.dx) + bottomLeft.dx;
bottomRightY = (topRight.dy - topLeft.dy) + bottomLeft.dy;
sourceBottomRightX = dimMinusThree;
sourceBottomRightY = dimMinusThree;
}
return PerspectiveTransform.quadrilateralToQuadrilateral(
topLeft.dx,
topLeft.dy,
topRight.dx,
topRight.dy,
bottomRightX,
bottomRightY,
bottomLeft.dx,
bottomLeft.dy,
3.5,
3.5,
dimMinusThree,
3.5,
sourceBottomRightX,
sourceBottomRightY,
3.5,
dimMinusThree);
}
/// <p>Computes the dimension (number of modules on a size) of the QR Code based on the position
/// of the finder patterns and estimated module size.</p>
int computeDimension(Offset topLeft,
Offset topRight,
Offset bottomLeft,
double moduleSize) {
int tltrCentersDimension = ((topLeft - topRight).distance ~/ moduleSize);
int tlblCentersDimension = ((topLeft - bottomLeft).distance ~/ moduleSize);
int dimension = ((tltrCentersDimension + tlblCentersDimension) ~/ 2) + 7;
switch (dimension % 4) { // mod 4
case 0:
dimension++;
break;
// 1? do nothing
case 2:
dimension--;
break;
case 3:
//throw NotFoundException.getNotFoundInstance();
break;
}
return dimension;
}
/// <p>Computes an average estimated module size based on estimated derived from the positions
/// of the three finder patterns.</p>
///
/// @param topLeft detected top-left finder pattern center
/// @param topRight detected top-right finder pattern center
/// @param bottomLeft detected bottom-left finder pattern center
/// @return estimated module size
double calculateModuleSize(Offset topLeft,
Offset topRight,
Offset bottomLeft) {
// Take the average
return (calculateModuleSizeOneWay(topLeft, topRight) +
calculateModuleSizeOneWay(topLeft, bottomLeft)) / 2.0;
}
/// <p>Estimates module size based on two finder patterns -- it uses
/// {@link #sizeOfBlackWhiteBlackRunBothWays(int, int, int, int)} to figure the
/// width of each, measuring along the axis between their centers.</p>
double calculateModuleSizeOneWay(Offset pattern, Offset otherPattern) {
double moduleSizeEst1 = sizeOfBlackWhiteBlackRunBothWays( pattern.dx.toInt(),
pattern.dy.toInt(),
otherPattern.dx.toInt(),
otherPattern.dy.toInt());
double moduleSizeEst2 = sizeOfBlackWhiteBlackRunBothWays(otherPattern.dx.toInt(),
otherPattern.dy.toInt(),
pattern.dx.toInt(),
pattern.dy.toInt());
if (moduleSizeEst1 == double.nan) {
return moduleSizeEst2 / 7.0;
}
if (moduleSizeEst2 == double.nan) {
return moduleSizeEst1 / 7.0;
}
// Average them, and divide by 7 since we've counted the width of 3 black modules,
// and 1 white and 1 black module on either side. Ergo, divide sum by 14.
return (moduleSizeEst1 + moduleSizeEst2) / 14.0;
}
/// See {@link #sizeOfBlackWhiteBlackRun(int, int, int, int)}; computes the total width of
/// a finder pattern by looking for a black-white-black run from the center in the direction
/// of another point (another finder pattern center), and in the opposite direction too.
double sizeOfBlackWhiteBlackRunBothWays(int fromX, int fromY, int toX, int toY) {
double result = sizeOfBlackWhiteBlackRun(fromX, fromY, toX, toY);
// Now count other way -- don't run off image though of course
double scale = 1.0;
int otherToX = fromX - (toX - fromX);
if (otherToX < 0) {
scale = fromX / (fromX - otherToX).toDouble();
otherToX = 0;
} else if (otherToX >= bitMatrix.width) {
scale = (bitMatrix.width - 1 - fromX) / (otherToX - fromX).toDouble();
otherToX = bitMatrix.width - 1;
}
int otherToY = (fromY - (toY - fromY) * scale).toInt();
scale = 1.0;
if (otherToY < 0) {
scale = fromY / (fromY - otherToY).toDouble();
otherToY = 0;
} else if (otherToY >= bitMatrix.height) {
scale = (bitMatrix.height - 1 - fromY) / (otherToY - fromY).toDouble();
otherToY = bitMatrix.height - 1;
}
otherToX = (fromX + (otherToX - fromX) * scale).toInt();
result += sizeOfBlackWhiteBlackRun(fromX, fromY, otherToX, otherToY);
// Middle pixel is double-counted this way; subtract 1
return result - 1.0;
}
/// <p>This method traces a line from a point in the image, in the direction towards another point.
/// It begins in a black region, and keeps going until it finds white, then black, then white again.
/// It reports the distance from the start to this point.</p>
///
/// <p>This is used when figuring out how wide a finder pattern is, when the finder pattern
/// may be skewed or rotated.</p>
double sizeOfBlackWhiteBlackRun(int fromX, int fromY, int toX, int toY) {
// Mild variant of Bresenham's algorithm;
// see http://en.wikipedia.org/wiki/Bresenham's_line_algorithm
bool steep = (toY - fromY).abs() > (toX - fromX).abs();
if (steep) {
int temp = fromX;
fromX = fromY;
fromY = temp;
temp = toX;
toX = toY;
toY = temp;
}
int dx = (toX - fromX).abs();
int dy = (toY - fromY).abs();
int error = -dx ~/ 2;
int xstep = fromX < toX ? 1 : -1;
int ystep = fromY < toY ? 1 : -1;
// In black pixels, looking for white, first or second time.
int state = 0;
// Loop up until x == toX, but not beyond
int xLimit = toX + xstep;
for (int x = fromX, y = fromY; x != xLimit; x += xstep) {
int realX = steep ? y : x;
int realY = steep ? x : y;
// Does current pixel mean we have moved white to black or vice versa?
// Scanning black in state 0,2 and white in state 1, so if we find the wrong
// color, advance to next state or end if we are in state 2 already
if ((state == 1) == bitMatrix.get(realX, realY)) {
if (state == 2) {
return (Offset(x.toDouble(), y.toDouble())- Offset(fromX.toDouble(), fromY.toDouble())).distance;
}
state++;
}
error += dy;
if (error > 0) {
if (y == toY) {
break;
}
y += ystep;
error -= dx;
}
}
// Found black-white-black; give the benefit of the doubt that the next pixel outside the image
// is "white" so this last point at (toX+xStep,toY) is the right ending. This is really a
// small approximation; (toX+xStep,toY+yStep) might be really correct. Ignore this.
if (state == 2) {
return (Offset((toX + xstep).toDouble(), toY.toDouble()) - Offset(fromX.toDouble(), fromY.toDouble())).distance;
}
// else we didn't find even black-white-black; no estimate is really possible
return double.nan;
}
}