-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_began.py
235 lines (195 loc) · 9.05 KB
/
train_began.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse
import os
import torch
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm, trange
from data.dataloaders import get_dataloader
from model.began import Discriminator128, Generator128
from utils import get_z_vector, normalize
def save(path, epoch, model, optimizer, scheduler):
torch.save(
{
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict()
}, path)
return
def load(path, model, optimizer, scheduler):
checkpoint = torch.load(path)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
epoch = checkpoint['epoch']
return epoch
def ac_loss(input, disc):
# pixelwise L1 - for each pixel for each image in the batch
return torch.mean(torch.abs(input - disc.forward(input)))
def main(args):
checkpoint_path = f"checkpoints/{args.dataset}_{args.run_name}"
tensorboard_path = f"tensorboard_logs/{args.dataset}_{args.run_name}"
torch.backends.cudnn.benchmark = True
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
writer = SummaryWriter(tensorboard_path)
dataloader, _ = get_dataloader(args.dataset_dir, args.batch_size,
args.n_train, True)
gen = Generator128(args.latent_dim).to(device)
disc = Discriminator128(args.latent_dim).to(device)
# Get latent_shape for x1 only
latent_shape = gen.input_shapes[args.n_cuts][0]
if torch.cuda.device_count() > 1:
gen = torch.nn.DataParallel(gen)
disc = torch.nn.DataParallel(disc)
gen_optimizer = torch.optim.Adam(gen.parameters(), args.lr)
gen_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
gen_optimizer,
len(dataloader) * args.epochs, 0.25 * args.lr)
disc_optimizer = torch.optim.Adam(disc.parameters(), args.lr)
disc_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
disc_optimizer,
len(dataloader) * args.epochs, 0.25 * args.lr)
current_checkpoint = 0
if (not os.path.exists(checkpoint_path)):
os.makedirs(checkpoint_path)
else:
print("Restoring from checkpoint...")
paths = os.listdir(checkpoint_path)
try:
available = sorted(set([int(x.split(".")[1]) for x in paths]))
# Find a checkpoint that both gen AND disc have reached
# Reaching zero will cause IndexError during pop()
while True:
latest_idx = available.pop()
latest_disc = os.path.join(checkpoint_path,
f"disc_ckpt.{latest_idx}.pt")
latest_gen = os.path.join(checkpoint_path,
f"gen_ckpt.{latest_idx}.pt")
if os.path.exists(latest_disc) and os.path.exists(latest_gen):
break
current_checkpoint = latest_idx
disc_epoch = load(latest_disc, disc, disc_optimizer,
disc_scheduler)
gen_epoch = load(latest_gen, gen, gen_optimizer, gen_scheduler)
assert disc_epoch == gen_epoch, \
'Checkpoint contents are mismatched!'
print(f"Loaded checkpoint {current_checkpoint}")
except Exception as e:
print(e)
print("Unable to load from checkpoint.")
k = 0
# Uniform from -1 to 1
const_sample = get_z_vector((args.batch_size, *latent_shape),
mode='uniform',
dtype=torch.float,
device=device)
n_gen_param = sum([x.numel() for x in gen.parameters() if x.requires_grad])
n_disc_param = sum(
[x.numel() for x in disc.parameters() if x.requires_grad])
print(f"{n_gen_param + n_disc_param} Trainable Parameters")
if current_checkpoint < args.epochs - 1:
for e in trange(current_checkpoint,
args.epochs,
initial=current_checkpoint,
desc='Epoch',
leave=True,
disable=args.disable_tqdm):
for i, img_batch in tqdm(enumerate(dataloader),
total=len(dataloader),
leave=False,
disable=args.disable_tqdm):
disc_optimizer.zero_grad()
gen_optimizer.zero_grad()
img_batch = img_batch.to(device)
# Uniform from -1 to 1
d_latent_sample = get_z_vector(
(args.batch_size, *latent_shape),
mode='uniform',
dtype=torch.float,
device=device)
g_latent_sample = get_z_vector(
(args.batch_size, *latent_shape),
mode='uniform',
dtype=torch.float,
device=device)
batch_ac_loss = ac_loss(img_batch, disc)
d_fake_ac_loss = ac_loss(
gen.forward(d_latent_sample, x2=None,
n_cuts=args.n_cuts).detach(), disc)
g_fake_ac_loss = ac_loss(
gen.forward(g_latent_sample, x2=None, n_cuts=args.n_cuts),
disc)
def d_loss():
loss = batch_ac_loss - k * d_fake_ac_loss
loss.backward()
return loss
def g_loss():
loss = g_fake_ac_loss
loss.backward()
return loss
disc_optimizer.step(d_loss)
gen_optimizer.step(g_loss)
disc_scheduler.step()
gen_scheduler.step()
k = k + args.prop_gain * \
(args.gamma * batch_ac_loss.item() - g_fake_ac_loss.item())
m = ac_loss(img_batch, disc) + \
torch.abs(args.gamma * batch_ac_loss - g_fake_ac_loss)
writer.add_scalar("Convergence", m, len(dataloader) * e + i)
if (i % args.log_every == 0):
ex_img = gen.forward(g_latent_sample,
x2=None,
n_cuts=args.n_cuts)[0]
writer.add_image("Random/Raw", ex_img,
len(dataloader) * e + i)
writer.add_image("Random/Clamp", ex_img.clamp(0, 1),
len(dataloader) * e + i)
writer.add_image("Random/Normalize", normalize(ex_img),
len(dataloader) * e + i)
ex_img_const = gen.forward(const_sample,
x2=None,
n_cuts=args.n_cuts)[0]
writer.add_image("Constant/Raw", ex_img_const,
len(dataloader) * e + i)
writer.add_image("Constant/Clamp",
ex_img_const.clamp(0, 1),
len(dataloader) * e + i)
writer.add_image("Constant/Normalize",
normalize(ex_img_const),
len(dataloader) * e + i)
save(os.path.join(checkpoint_path, f"gen_ckpt.{e}.pt"), e, gen,
gen_optimizer, gen_scheduler)
save(os.path.join(checkpoint_path, f"disc_ckpt.{e}.pt"), e, disc,
disc_optimizer, disc_scheduler)
def float01(x):
x = float(x)
if x > 1 or x < 0:
raise argparse.ArgumentError()
return x
if __name__ == '__main__':
p = argparse.ArgumentParser()
p.add_argument('--dataset_dir', required=True)
p.add_argument('--batch_size', type=int, required=True)
p.add_argument('--run_name', required=True)
p.add_argument('--n_cuts', type=int, default=0, choices=[0, 1])
p.add_argument('--latent_dim', type=int, default=64)
p.add_argument('--epochs', type=int, default=50)
p.add_argument('--n_train', type=int, default=-1)
p.add_argument('--lr', type=float, default=1e-4)
p.add_argument('--b1', type=float, default=0.9, help='Adam beta1')
p.add_argument('--b2', type=float, default=0.999, help='Adam beta2')
p.add_argument('--gamma',
type=float01,
default=0.5,
help='BEGAN diversity parameter')
p.add_argument('--prop_gain',
type=float,
default=0.001,
help='Proportional gain for k')
p.add_argument('--log_every',
type=int,
default=100,
help='tensorboard logging interval')
p.add_argument('--disable_tqdm', action='store_true')
args = p.parse_args()
args.dataset = 'celeba'
main(args)