-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathuseful_info.tex
executable file
·401 lines (347 loc) · 20.2 KB
/
useful_info.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
\documentclass[12pt,letterpaper]{article}
\usepackage{amsmath,
amsfonts,
amssymb}
\usepackage[utf8]{inputenc}
\usepackage{graphicx}
\usepackage{hyperref}
\usepackage{caption}
\usepackage{subcaption}
\usepackage{float}
%%% Package setup
\captionsetup{font=small,
labelfont=bf,
labelsep=period}
\hypersetup{
bookmarksopen=true,
colorlinks=true,
linkcolor=blue,
citecolor=blue,
urlcolor=black,
linktoc=all,
pdftitle={Wave propagation info},
pdfauthor={N. Guarin-Zapata},
pdfkeywords={Wave propagation, Signal processing},
pdfsubject={Wave propagation},
pdfpagemode=UseOutlines,
pdfstartview=FitH}
%%% User specified LaTeX commands
\newcommand*{\bs}[1]{\boldsymbol{#1}}
%%% Title
\title{\textbf{Information for simulations in Wave Propagation}}
\author{Nicolás Guarín-Zapata}
\date{\today}
%%% Document
\begin{document}
\maketitle
\section{Consistent units}
Although is a good practice to convert the equations to their dimensionless versions, we still need to plug numbers into our numerical algorithms. For that aim we need to use consistent units, as presented in the following table.
\begin{table}[h]
\centering
\begin{tabular}{ccccc}
\hline
\textbf{Quantity} & \textbf{SI} & \textbf{SI (mm)} & \textbf{US (ft)} & \textbf{US (inch)} \\
\hline
Length & m & mm & ft & in \\
Force & N & N & lbf & lbf \\
Mass & kg & tonne (10$^3$ kg) & slug & lbf s$^2$/in \\
Time & s & s & s & s \\
Stress & Pa (N/m$^2$) & MPa (N/mm$^2$) & lbf/ft$^2$ & psi (lbf/in$^2$) \\
Energy & J & mJ (10$^{-3}$) & ft lbf & in lbf \\
Density & kg/m$^3$ & tonne/mm$^3$ & slug/ft$^3$ & lbf s$^2$/in$^4$ \\
\hline
\end{tabular}
\end{table}
\section{Relations between elastic constants}
\begin{table}[h]
\centering
\begin{tabular}{ccccccc}
\hline
&$\bs{K}=$ &$\bs{E}=$ &$\bs{\lambda}=$ &$\bs{G}=$ &$\bs{\nu}=$ &$\bs{M}=$ \\
\hline
$\bs{(K,E)}$ &$K$ &$E$ &$\frac{3K(3KE)}{9K-E}$ &$\frac{3KE}{9K-E}$ &$\frac{3K-E}{6K}$ &$\frac{3K(3K+E)}{9K-E}$\\
$\bs{(K,\lambda)}$ &$K$ &$\frac{9K(K-\lambda)}{3K-\lambda}$ &$\lambda$ &$\frac{3(K-\lambda)}{2}$ &$\frac{\lambda}{3K-\lambda}$ &$3K-2\lambda$\\
$\bs{(K,G)}$ &$K$ &$\frac{9KG}{2K+G}$ &$K-\frac{2G}{3}$ &$G$ &$\frac{3K-2G}{2(3K+G)}$ &$K+\frac{4G}{3}$\\
$\bs{(K,\nu)}$ &$K$ &$3K(1-2\nu)$ &$\frac{3K\nu}{1+\nu}$ &$\frac{3K(1-2\nu)}{2(1+\nu)}$ &$\nu$ &$\frac{3K(1-\nu)}{1+\nu}$\\
$\bs{(E,G)}$ &$\frac{EG}{3(3G-E)}$ &$E$ &$\frac{G(E-2G)}{EG-E}$ &$G$ &$\frac{E}{2G}-1$ &$\frac{G(4G-E)}{3G-E}$\\
$\bs{(E,\nu)}$ &$\frac{E}{3(1-2\nu)}$ &$E$ &$\frac{E\nu}{(1+\nu)(1-2\nu)}$ &$\frac{E}{2(1+\nu)}$ &$\nu$ &$\frac{E(1-\nu)}{(1+\nu)(1-2\nu)}$\\
$\bs{(\nu,G)}$ &$\lambda+\frac{2G}{3}$ &$\frac{G(3\lambda+2G)}{\lambda+G}$ &$\lambda$ &$G$ &$\frac{\lambda}{2(\lambda+G)}$ &$\lambda+2G$\\
$\bs{(\nu,\lambda)}$ &$\frac{\lambda(1+\nu)}{3(1-2\nu)}$ &$\frac{\lambda(1+\nu)(1-2\nu)}{\nu}$ &$\lambda$ &$\frac{\lambda(1-2\nu)}{2\nu}$ &$\nu$ &$\frac{\lambda(1-\nu)}{\nu}$\\
$\bs{(G,\lambda)}$ &$\frac{2G(1+\nu)}{3(1-2\nu)}$ &$2G(1+\nu)$ &$\frac{2G\nu}{1-2\nu}$ &$G$ &$\nu$ &$\frac{2G(1-\nu)}{1-2\nu}$ \\
$\bs{(G,M)}$ &$M-\frac{4G}{3}$& $\frac{G(3-M-4G)}{M-2G}$ &$M-2G$ &$G$ &$\frac{M-2G}{2(M-G)}$ &$M$\\
\hline
\end{tabular}
\label{tab:elastic_constants}
\end{table}
$K$: Bulk modulus, $\lambda$: Lamé's first parameter, $E$: Young's
modulus, $G$: Shear modulus, $\nu$: Poisson's ratio, $M$: P-wave
modulus.
\section{Relations for elastic wave speeds}
The P-wave is a dilatational wave with speed $\alpha$ given by
\begin{align*}
& \alpha^{2}=\frac{\lambda+2G}{\rho},\qquad\alpha^{2}=\frac{G(1-\nu)}{\rho},\\
& \alpha^{2}=\frac{M}{\rho},\qquad\alpha^{2}=\frac{E(1-\nu)}{(1+\nu)(1-2\nu)\rho},\\
& \alpha^{2}=\frac{2\beta^{2}(1-\nu)}{1-2\nu}.
\end{align*}
The S-wave is a distorsional wave with speed $\beta$ given by
\begin{align*}
& \beta^{2}=\frac{G}{\rho}\\
& \beta^{2}=\frac{E}{2(1+\nu)\rho},\\
& \beta^{2}=\frac{\alpha^{2}(1-2\nu)}{2(1-\nu)}.
\end{align*}
Some particular values for the ratio
\[
\frac{\alpha^{2}}{\beta^{2}}=\frac{2(1-\nu)}{1-2\nu}
\]
are
\begin{align*}
& \frac{\alpha^{2}}{\beta^{2}}=\frac{4}{3}\quad\mbox{for }\nu=-1\enspace,\\
& \frac{\alpha^{2}}{\beta^{2}}=2\quad\mbox{for }\nu=0\enspace,\\
& \frac{\alpha^{2}}{\beta^{2}}=4\quad\mbox{for }\nu=\frac{1}{3}\enspace,\\
& \frac{\alpha^{2}}{\beta^{2}}\rightarrow\infty\quad\mbox{when }\nu\rightarrow\frac{1}{2}\enspace.
\end{align*}
\begin{figure}[h]
\centering
\includegraphics[width=0.9\textwidth]{img/E_vs_density-vector.pdf}
\caption{Ashby chart for Young Modulus vs density. The lines show the sound speed, that is the speed for a wave in a rod made of this material and is between the longitudinal and shear wave speeds --for Poisson ratios in (-0.5,0.5). Taken from \emph{Ashby, Michael F. ``Materials selection in mechanical design." MRS BULLETIN 30 (2005): 995.}}
\end{figure}
\section{Courant-Friedrichs-Lewy condition}
The Courant-Friedrichs-Lewy condition (CFL condition) is a necessary condition for convergence while solving certain partial differential equations (usually hyperbolic PDEs) numerically by the method of finite differences. It arises when explicit time-marching schemes are used for the numerical solution. The condition is named after Richard Courant, Kurt Friedrichs, and Hans Lewy who described it in their 1928 paper
\cite{CFL}.
The criterion could be stated as
\begin{align*}
C=v_{x}\frac{\Delta t}{\Delta x}\leq C_{max}\qquad\mbox{in 1D}\enspace;\\
C=v_{x}\frac{\Delta t}{\Delta x}+v_{y}\frac{\Delta t}{\Delta y}\leq C_{max}\qquad\mbox{in 2D}\enspace;\\
C=v_{x}\frac{\Delta t}{\Delta x}+v_{y}\frac{\Delta t}{\Delta y}+v_{z}\frac{\Delta t}{\Delta z}\leq C_{max}\qquad\mbox{in 3D}\enspace;
\end{align*}
Where $v_{x_{i}}$ is the phase speed (for wave phenomena) in the $x_{i}$ direction, $\Delta x_{i}$ is the minimum spatial discretization in $x_{i}$ direction, $\Delta t$ is the time step and $C_{max}$ is the maximum allowable value for $C$, which depends on the time discretization scheme but should be less than 1.
In the case of elastodynamics and for a spatial discretization with
the finite element method, the criterion could be re-stated as
\begin{align*}
C\leq\alpha\frac{\Delta t}{h}\leq C_{max}\qquad\mbox{in 1D}\enspace;\\
C\leq2\alpha\frac{\Delta t}{h}\leq C_{max}\qquad\mbox{in 2D}\enspace;\\
C\leq3\alpha\frac{\Delta t}{h}\leq C_{max}\qquad\mbox{in 3D}\enspace;
\end{align*}
where $\alpha$ is the phase speed for the P-wave and $h$ is the
minimum distance between consecutive nodes. This give us the maximum
allowable timestep as
\begin{align}
\Delta t\leq C_{max}\frac{h}{\alpha}\qquad\mbox{in 1D}\enspace;\\
\Delta t\leq\frac{C_{max}}{2}\frac{h}{\alpha}\qquad\mbox{in 2D}\enspace;\\
\Delta t\leq\frac{C_{max}}{3}\frac{h}{\alpha}\qquad\mbox{in 3D}\enspace.
\end{align}
A graphical representation of the criterion is given in Figure \ref{fig:CFL}. Intuitively, we can think about the CFL condition as a limit in the speed for transferring information from one node to its neighbors; this \emph{speed} should be less than the speed for propagation of phenomena in the wave.
\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{img/CFLcondition.png}
\caption{Graphic representation of the CFL condition in 1D. \textit{L.A. Barba et al. Practical Numerical Methods with Python, 2014.}}\label{fig:CFL}
\end{figure}
\section{Nyquist criterion}
The Nyquist–Shannon sampling theorem (also Nyquist-Shannon-Whittaker theorem), after Harry Nyquist and Claude Shannon, in the literature more commonly referred to as the Nyquist sampling theorem or simply as the sampling theorem, is a fundamental result in the field of information theory, in particular telecommunications and signal processing. Sampling is the process of converting a signal (for example, a function of continuous time or space) into a numeric
sequence (a function of discrete time or space). Shannon's version of the theorem states \cite{Shannon, Nyquist, wiki:nyquist, Whittaker}:
\begin{quote}
If a function $x(t)$ contains no frequencies higher than $B$ hertz,
it is completely determined by giving its ordinates at a series of
points spaced $1/(2B)$ seconds apart.
\end{quote}
This theorem implies for us in the numerical simulation of wave propagation
that
\[
h\leq\frac{\lambda}{2}\enspace,
\]
where $h$ is the maximum distance between consecutive nodes and
$\lambda$ is the shortest wavelength that want to be sampled. So,
the selection of $h$ is commonly
\[
h=\frac{\lambda}{k}\enspace,
\]
where $k>2$ is a factor that depends on the numerical method. For
finite element methods $k$ is commonly 10, and for spectral element
methods $k$ is reduced to 5 \cite{Komatitsch99}.
\section{Information for different pulse signals}
In wave propagation problems we must work with time signals that are finite in time, let's say wave pulses (or wave packets in the Quantum Mechanics jargon). Some times we are interested in wave pulses because they are useful as wavefronts representation. Furthermore, wave packets are important since we cannot store information in a wave with a single frequency\footnote{That's why phase speed of waves can be higher than speed of light. For non-dissipative media, the energy (and so the information) travel with the group velocity \cite{book:Brillouin1}.}. There is a trade off between the localization in time (duration of the pulse) and frequency (concentration of the energy around a specific value). This fact is well discussed in Quantum Mechanics texts since it re ects the discussion about wave{particle duality and uncertainty principle \cite{book:Zetilli}. When we have finite time signals its corresponding Fourier transform will be in the whole frequency domain. In general terms, while more concentrated in the time domain, more spread in the frequency domain. From a numerical point of view we need to truncate the maximum frequency allowed for our simulations.
In the following \emph{subsections} we exposed some truncation tips for different wave pulses. This is important because numerically we cannot consider the complete spectrum of a pulse, since normally they cover the whole frequency domain. We will refer to the function in time as $f(t)$, and to its Fourier transform as $\hat{f}(\omega)$. Since the ``energy" carried for the wave per frequency is proportional to the square of the absolute value of the Fourier transform $\hat{f}^2(\omega)$, we can compare the energy in the frequency interval $[0,\omega_{\max}]$ to the energy content in $[0,\infty)$\footnote{We just need to compute one halfspace because the other half has the same values.}. Thus, as a figure of merit we define
\begin{equation}
R(\omega_{\max}) = \frac{\int\limits_{0}^{\omega_{\max}} \hat{f}^2 (\omega)\ \rm{d}\omega}{\int\limits_{0}^{\infty} \hat{f}^2 (\omega)\ \rm{d}\omega}\times 100\% \enspace ,
\label{eq:trunc_energy}
\end{equation}
and tell us the proportion of energy taken into account if we neglect circular frequencies higher than $\omega_{\max}$.
\subsection{Ricker wavelet}
It is common to use a Ricker wavelet as the input signal in simulations since it has the energy concentrated around a circular frequency $\omega_{c}$. Let's write the signal as
\[f(t)=\left(\frac{12t^{2}}{b^{2}}-1\right)e^{-\frac{6t^{2}}{b^{2}}}\enspace,\]
where $b$ is the elapsed time between the peaks in the time domain \cite{Papageorgiou91}. The Fourier transform for this signal is
\[\hat{f}(\omega)=-\frac{\sqrt{\pi}b^{3}\omega^{2}e^{-\frac{b^{2}\omega^{2}}{24}}}{2\ 6^{3/2}}\enspace, \]
with a characteristic\footnote{The characteristic frequency is the value at which the peak appears.} circular frequency
\[\omega_{c}=\frac{2\sqrt{6}}{b}. \]
To satisfy the sampling theorem we need to design our simulations
thinking about the shortest wavelength, so we need to think about
the maximum frequency. To know where to trunk the signal (in the frequency domain) we could compute how much energy is in $[0,\omega_{max}]$ and compare this value with the energy stored in the interval $[0,\infty)$. Some particular values are :
\begin{align*}
& R(1.0\omega_{c})=45.06\%\enspace;\\
& R(1.5\omega_{c})=89.09\%\enspace;\\
& R(2.0\omega_{c})=99.32\%\enspace;\\
& R(3.0\omega_{c})=99.99\%\enspace;\\
& R(4.0\omega_{c})=100.00\%\enspace.
\end{align*}
This can be depicted in Figure \ref{fig:ricker-areas}
\begin{figure}[H]
\centering
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{img/ricker_area=1.pdf}
\caption{Area under the curve in $[0,\omega_c]$.}
\end{subfigure}\
%
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{img/ricker_area=2.pdf}
\caption{Area under the curve in $[0,2\omega_c]$.}
\end{subfigure}\\
%
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{img/ricker_area=3.pdf}
\caption{Area under the curve in $[0,3\omega_c]$.}
\end{subfigure}
%
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{img/ricker_area=4.pdf}
\caption{Area under the curve in $[0,4\omega_c]$.}
\end{subfigure}
\caption{Energy distribution in the spectrum of the Ricker wavelet.}
\label{fig:ricker-areas}
\end{figure}
\subsection{Gaussian wavelet}
One option to obtain a wavelet with the energy concentrated in a single frequency value is to use a signal which spectrum is a Gaussian function (Normal distribution) of the form\footnote{Both, the positive and negative frequencies are \textit{valid}. That's why we should include the second term in brackets.}
\begin{equation}\label{eq:gaussian_freq}
\hat{f}(\omega)=\frac{1}{\omega_\sigma \sqrt{2\pi}} \left[e^{-\frac{(\omega - \omega_0)^2}{2\omega_\sigma^2}}+ e^{-\frac{(\omega + \omega_0)^2}{2\omega_\sigma^2}} \right] \enspace ,
\end{equation}
where \(\omega\) is the angular frequency, \(\omega_0\) is the value of angular frequency for the highest density (mean value), \(\omega_\sigma\) is the value around \(\omega_0\) to have roughly 80\% of the energy (standard deviation). In the time domain, the signal looks like
\begin{equation}\label{eq:gaussian_time}
f(t) = 2 e^{-\frac{(\omega_\sigma t)^2}{2}}\cos(\omega_0 t) \enspace ,
\end{equation}
that is, basically, a harmonic function modulated by a Gaussian.
If we consider that \(\omega_0/\omega_\sigma >0\) we can have the expressions
\begin{align*}
&R(\omega_0) = 50\%;\\
&R(\omega_0 + \omega_\sigma) = 84.27\%;\\
&R(\omega_0 + 2\omega_\sigma) = 97.73\%;\\
&R(\omega_0 + 3\omega_\sigma)= 99.87\%;\\
&R(\omega_0 + 4\omega_\sigma) = 100.00\%
\end{align*}
that is depicted in Figure \ref{fig:gaussian-areas}
\begin{figure}[H]
\centering
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{img/gaussian_area=1.pdf}
\caption{Area under the curve in $[0,\omega_0]$.}
\end{subfigure}\
%
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{img/gaussian_area=2.pdf}
\caption{Area under the curve in $[0,\omega_0 + \omega_\sigma]$.}
\end{subfigure}\\
%
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{img/gaussian_area=3.pdf}
\caption{Area under the curve in $[0,\omega_0 + 2\omega_\sigma]$.}
\end{subfigure}
%
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{img/gaussian_area=4.pdf}
\caption{Area under the curve in $[0,\omega_c + 3\omega_\sigma]$.}
\end{subfigure}
\caption{Energy distribution in the spectrum of the Gaussian wavelet.}
\label{fig:gaussian-areas}
\end{figure}
\subsection{Square pulse}
A square pulse with duration \(\Delta t\) is given by
\begin{equation}\label{eq:square_time}
f(t/\Delta t) =
\begin{cases}
0 &\mbox{if } |t| >= \Delta t/2 \\
1 & \mbox{if } |t| < \Delta t/2
\end{cases}
\end{equation}
And the Fourier transform is given by
\begin{equation}\label{eq:square_freq}
\hat(f)(\omega \Delta t) = \frac{\sin\left(\frac{\omega \Delta t}{2}\right)}{\left(\frac{\omega \Delta t}{2}\right)} \enspace ,
\end{equation}
for this case, the ratios \(R\) are:
\begin{align*}
&R(\pi/2\Delta t) = 77.37\%;\\
&R(\pi/\Delta t) = 90.28\%;\\
&R(2\pi/\Delta t) = 94.99\%;\\
&R(3\pi/\Delta t) = 96.64\%.
\end{align*}
This can be depicted in Figure \ref{fig:square-areas}
\begin{figure}[H]
\centering
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{img/square_area=1.pdf}
\caption{Area under the curve in $[0,\pi/2\Delta t]$.}
\end{subfigure}\
%
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{img/square_area=2.pdf}
\caption{Area under the curve in $[0,\pi/\Delta t]$.}
\end{subfigure}\\
%
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{img/square_area=3.pdf}
\caption{Area under the curve in $[0,2\pi/\Delta t]$.}
\end{subfigure}
%
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{img/square_area=4.pdf}
\caption{Area under the curve in $[0,3\pi/\Delta t]$.}
\end{subfigure}
\caption{Energy distribution in the spectrum for the square wavelet.}
\label{fig:square-areas}
\end{figure}
\subsection{Triangle pulse}
The triangle pulse is given by the convolution of two square pulses, and the Fourier transform is
\begin{equation}
\hat{f}(\omega) = \left[\frac{\sin(\omega/2)}{(\omega/2)}\right]^2 \enspace .
\end{equation}
For this case the ratios are:
\begin{align*}
&R(\pi/2\Delta t) = 65.77\%;\\
&R(\pi/\Delta t) = 94.98\%;\\
&R(2\pi/\Delta t) = 99.71\%;\\
&R(3\pi/\Delta t) = 99.87\%.
\end{align*}
That are depicted in Figure \ref{fig:triangle-areas}
\begin{figure}[H]
\centering
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{img/triangle_area=1.pdf}
\caption{Area under the curve in $[0,\pi/2\Delta t]$.}
\end{subfigure}\
%
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{img/triangle_area=2.pdf}
\caption{Area under the curve in $[0,\pi/\Delta t]$.}
\end{subfigure}\\
%
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{img/triangle_area=3.pdf}
\caption{Area under the curve in $[0,2\pi/\Delta t]$.}
\end{subfigure}
%
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{img/triangle_area=4.pdf}
\caption{Area under the curve in $[0,3\pi/\Delta t]$.}
\end{subfigure}
\caption{Energy distribution in the spectrum for the triangle wavelet.}
\label{fig:triangle-areas}
\end{figure}
\begin{thebibliography}{9}
\bibitem{book:Brillouin1} Brillouin, Le\'on, and Arnold Sommerfeld. Wave propagation and group velocity. Vol. 960. New York: Academic Press, 1960.
\bibitem{CFL} Courant, R.; Friedrichs, K.; Lewy, H. (1928), \emph{\"Uber die partiellen Differenzengleichungen der mathematischen Physik} (in German), Mathematische Annalen 100 (1): 32--74.
\bibitem{Shannon} C. E. Shannon, \emph{Communication in the presence of noise}, Proc. Institute of Radio Engineers, vol. 37, no. 1, pp. 10--21, Jan. 1949. Reprint as classic paper in: Proc. IEEE, vol. 86, no. 2, (Feb. 1998), \url{http://web.stanford.edu/class/ee104/shannonpaper.pdf} (accesed may 26, 2016).
\bibitem{Komatitsch99} D. Komatitsch and J. Tromp,\emph{Introduction to the spectral element method for three-dimensional seismic wave propagation}, Geophysical Journal International, 1999, (139): 806--822.
\bibitem{Papageorgiou91} A. Papageorgiou and J. Kim,\emph{Study of the propagation and amplification of seismic waves in Caracas Valley with reference to the 29 July 1967 earthquake: SH waves}, Bulletin of the Seismological Society of America, 1991, 81 (6): 2214--2233.
\bibitem{wiki:nyquist} Wikipedia contributors, \emph{Nyquist-Shannon sampling theorem}, Wikipedia, The Free Encyclopedia, \url{https://en.wikipedia.org/w/index.php?title=Nyquist%E2%80%93Shannon_sampling_theorem} (accessed May 26, 2016).
\bibitem{Nyquist} H. Nyquist, Certain topics in telegraph transmission theory, Trans. AIEE, vol. 47, pp. 617--644, Apr. 1928 Reprint as classic paper in: Proc. IEEE, Vol. 90, No. 2, Feb 2002, , \url{http://www.astro.ufrgs.br/med/imagens/nyquist.pdf} (accesed may 26, 2016).
\bibitem{Whittaker} E. T. Whittaker, On the Functions Which are Represented by the Expansions of the Interpolation Theory, Proc. Royal Soc. Edinburgh, Sec. A, vol.35, pp. 181--194, 1915.
\bibitem{book:Zetilli} Nouredine Zettili. Quantum mechanics: concepts and applications. Wiley, 2009.
\end{thebibliography}
\end{document}