-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
897 lines (811 loc) · 33.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
import argparse
import os
import os.path as osp
import numpy as np
import torch
from torch.nn import functional as F
from torch.nn.utils import clip_grad_norm_
from torch.optim import AdamW
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import wandb
from src.matching_loss import SetCriterion
from src.metrics import (
AccuracyEvaluator,
APEvaluator, ARIEvaluator,
MemoryPropAccEvaluator, IoUEvaluator,
PerShapePanopticEvaluator
)
from src.tools import visualize_mesh, COLORS
from src.datasets import custom_collate
print("PID : ", os.getpid())
ALL_CLASSES = 481
class Trainer:
"""Train/test models on correspondence."""
def __init__(self, model, data_loaders, args):
self.model = model
self.data_loaders = data_loaders
self.args = args
self.optimizer = AdamW(
model.parameters(),
lr=args.lr, weight_decay=args.weight_decay
)
self.criterion = SetCriterion(
use_identity=not args.hungarian,
no_obj_coef=args.negative_obj_weight,
cls_cost=1.0 if args.model == 'xy_3ddetr' else 4.0,
background_coef=args.background_coef
)
if not args.eval or args.ft_epoch > 0:
self.writer = SummaryWriter(f'runs/{args.run_name}')
if self.args.eval and self.args.visualize_wandb:
wandb.init(name=self.args.run_name)
self.val_freq = 1
def run(self):
# Set
start_epoch = 0
val_acc_prev_best = -1.0
# Load
if self.args.bootstrap is not None:
self._bootstrap()
if osp.exists(self.args.ckpnt):
start_epoch, val_acc_prev_best = self._load_ckpnt()
# Eval?
if self.args.eval or start_epoch >= self.args.epochs:
mode = 'val'
if self.args.eval_train:
mode = 'train'
if self.args.eval_test:
mode = 'test'
self.model.eval()
self.multiseed_eval(mode)
return self.model
# Go!
for epoch in range(start_epoch, self.args.epochs):
print("Epoch: %d/%d" % (epoch + 1, self.args.epochs))
self.model.train()
# Train
self.train_test_loop('train', epoch)
# Validate
if (epoch + 1) % self.val_freq == 0:
print("\nValidation")
self.model.eval()
with torch.no_grad():
val_acc = self.train_test_loop('val', epoch)[0]
# val_acc = 0
# Store
if val_acc >= val_acc_prev_best:
print("Saving Checkpoint")
torch.save({
"epoch": epoch + 1,
"model_state_dict": self.model.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
"best_acc": val_acc,
"best_acc_epoch": epoch + 1,
"args": self.args
}, self.args.ckpnt)
val_acc_prev_best = val_acc
else:
print("Updating Checkpoint")
checkpoint = torch.load(self.args.ckpnt)
checkpoint["epoch"] += self.val_freq
torch.save(checkpoint, self.args.ckpnt)
self.writer.close()
return self.model
def average_weights(self):
ckpnt = torch.load(self.args.bootstrap)
sdict = dict(ckpnt["model_state_dict"])
params = dict(self.model.state_dict())
for name, param in params.items():
if name in sdict:
params[name].data.copy_(
0.5 * param.data + 0.5 * sdict[name].data
)
self.model.load_state_dict(params)
def _bootstrap(self):
ckpnt = torch.load(self.args.bootstrap)
self.model.load_state_dict(ckpnt["model_state_dict"], strict=False)
print(f'Bootstrapping from {self.args.bootstrap} at {ckpnt["epoch"]}')
def _load_ckpnt(self):
ckpnt = torch.load(self.args.ckpnt)
self.model.load_state_dict(ckpnt["model_state_dict"], strict=False)
if not self.args.eval:
self.optimizer.load_state_dict(ckpnt["optimizer_state_dict"])
start_epoch = ckpnt["epoch"]
val_acc_prev_best = ckpnt['best_acc']
print(
f'Loading checkpoint {self.args.ckpnt} ',
f'at {ckpnt["best_acc_epoch"]} with acc {val_acc_prev_best}'
)
if self.args.train_with_semantics and self.args.ft_epoch > 0:
print("!!! Re-init the last cls head")
for i in range(len(self.model.sem_cls_heads)):
for j in range(len(self.model.sem_cls_heads[i])):
m = self.model.sem_cls_heads[i][j] # last layer for cls
if isinstance(m, torch.nn.Conv1d):
print("zeroing out ", m)
torch.nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
torch.nn.init.zeros_(m.bias)
return start_epoch, val_acc_prev_best
def _prepare_inputs(self, batch):
device = self.args.device
ret = {
'pc_2': batch['pc'].to(device).float(),
'mask_2': batch['pc_labels'].to(device).bool(),
'pad_2': batch['pc_labels'].any(-2).to(device).long(),
'names': batch['class_names'],
'level': batch['level'].to(device).long().reshape(-1),
'is_cross': batch.get(
'is_cross', torch.ones(len(batch['pc']))
).to(device).bool()
}
if 'pc_mem' in batch:
ret.update({
'pc_1': [
b[:, 0].to(device).float()
for b in batch['pc_mem'].split(1, dim=1)
],
'mask_1': [
b[:, 0].to(device).bool()
for b in batch['pc_labels_mem'].split(1, dim=1)
],
'pad_1': batch['pc_labels_mem'].any(-2).to(device).long(),
'names_mem': batch['class_names_mem']
})
# Inputs for semantic segmentation
if self.args.use_semantics:
ret.update({
'part_sem_labels':
batch['part_sem_labels'].long().to(device),
'sem_lvl_mask': batch['sem_lvl_mask'].to(device),
'sem_cls_mask': batch['sem_cls_mask'].to(device)
})
if 'part_sem_labels_mem' in batch:
ret.update({
'part_sem_labels_mem': [
b[:, 0].long().to(device)
for b in
batch['part_sem_labels_mem'].split(1, dim=1)
]
})
if 'pc_1' not in ret:
ret['pc_1'] = [ret['pc_2']]
ret['mask_1'] = [ret['mask_2']]
ret['pad_1'] = ret['pad_2'][:, None]
if self.args.use_semantics:
ret['part_sem_labels_mem'] = [ret['part_sem_labels']]
return ret
def multiseed_eval(self, mode):
# Do eval/few-shot-eval over multiple seeds
_macro = []
_chkpt = str(self.args.ckpnt)
self.val_freq = 90
for seed_i in range(self.args.eval_multitask):
print(f"\ntask {seed_i} out of {self.args.eval_multitask - 1}")
if seed_i > 0 and (not self.args.eval_forgetting or self.args.eval_test):
# Load a new task ie new set of fewshot train samples
rng = np.random.RandomState(seed_i)
rand_seed = rng.randint(10000)
self.args.k_shot_seed = rand_seed
print("Loading new seed fewshot task ", seed_i, rand_seed)
self.data_loaders = fetch_loaders(self.args)
if self.args.ft_epoch:
# Make model finetune-ready
self.args.epochs = self.args.ft_epoch
self.args.eval = False
self.args.ckpnt = _chkpt.replace('.pt', f'{seed_i}.pt')
self.model = init_model(self.args).to(self.args.device)
self.optimizer = AdamW(
self.model.parameters(),
lr=self.args.lr, weight_decay=self.args.weight_decay
)
self.run()
# Disable finetuning mode
self.args.eval = True
self._load_ckpnt()
self.model.eval()
if self.args.eval_forgetting or self.args.use_finetuned:
self.args.ckpnt = _chkpt.replace('.pt', f'{seed_i}.pt')
self.model = init_model(self.args).to(self.args.device)
self._load_ckpnt()
# self.average_weights()
self.model.eval()
with torch.no_grad():
metrics = self.train_test_loop(mode)
_macro.append(metrics)
_macro = np.array(_macro)
print(f'eval_multitask : Macro {_macro.mean(0)} std {_macro.std(0)}')
def train_test_loop(self, mode='train', epoch=1000):
# Set the mode of the dataset!
self.data_loaders.dataset.split = mode
# Counters to store metrics
self._init_counters()
total_loss = 0
# Main loop
for step, ex in tqdm(enumerate(self.data_loaders)):
# Batch form
inputs = self._prepare_inputs(ex)
# Forward pass
# scores [(B, P, Q)], objectness [(B, Q)], sem_logits [(B, Q, S)]
scores, objectness, sem_logits = self.model(
inputs['pc_1'], inputs['mask_1'], inputs['pc_2'],
level_id=inputs['level'] - 1
)
# Semantic pred process: level + propagate labels
if self.args.use_semantics:
sem_logits = self._process_sem_logits(sem_logits, inputs)
# Losses
loss, inds = self._compute_loss(
scores, objectness, sem_logits,
self.criterion, inputs['mask_2'].float(),
inputs.get('part_sem_labels', None),
torch.cat(inputs['part_sem_labels_mem'], -1)
if 'part_sem_labels_mem' in inputs else None,
cls_mask=(
inputs['sem_cls_mask'] * inputs['sem_lvl_mask']
if 'sem_cls_mask' in inputs else None
),
is_cross=inputs['is_cross']
)
total_loss += loss.mean().item()
# Update
if mode == 'train' and not self.args.eval:
self.optimizer.zero_grad()
loss.backward()
clip_grad_norm_(self.model.parameters(), 0.5)
self.optimizer.step()
self.optimizer.zero_grad()
# Classless evaluation (ARI)
self.ari_evaluator.step(
scores[-1].sigmoid() * objectness[-1][:, None].sigmoid(),
inputs['mask_2'],
inputs['names'], (inputs['level'] - 1).tolist()
)
# Semantic evaluation
if self.args.val_with_semantics and mode != 'train':
# Label propagation accuracy on part level
self.mem_prop_acc_evaluator.step(
torch.cat(inputs['part_sem_labels_mem'], -1),
inputs['part_sem_labels'],
inds
)
# Panoptic Quality
if self.args.compute_pq:
self.panop_evaluator.step(
(
scores[-1].sigmoid()
* objectness[-1][:, None].sigmoid()
),
sem_logits[-1],
inputs['mask_2'].float(),
torch.matmul(
inputs['mask_2'].float(),
inputs['part_sem_labels'][..., None].float()
).squeeze(-1), # (B, P)
inputs['names'], (inputs['level'] - 1).tolist()
)
# Instance segmentation mAP
self.ap_evaluator.step(
scores=(
scores[-1].sigmoid()
* objectness[-1][:, None].sigmoid()
),
sem_logits=sem_logits[-1].softmax(-1),
objectness=objectness[-1],
target_masks=inputs['mask_2'].float(),
per_part_sem_labels=inputs['part_sem_labels'],
class_names=inputs['names'],
levels=inputs['level'].tolist()
)
# Semantic segmentation mIoU/mAcc
self.iou_evaluator.step(
scores=(
scores[-1].sigmoid()
* objectness[-1][:, None].sigmoid()
),
sem_logits=sem_logits[-1],
per_point_sem_labels=torch.matmul(
inputs['mask_2'].float(),
inputs['part_sem_labels'][..., None].float()
).squeeze(-1), # (B, P)
class_names=inputs['names'],
levels=inputs['level'].tolist(),
cls_mask=inputs['sem_cls_mask'] * inputs['sem_lvl_mask']
)
# Retriever evaluation
if self.args.use_memory:
self.retr_acc_evaluator.step(
inputs['names_mem'],
inputs['names']
)
# Visualization
if self.args.visualize_wandb:
# for b in range(len(inputs['pc_1'][0])):
# if sample_aris[b] > 0.7:
# continue
b = 0
for a in range(len(inputs['pc_1'])):
self._visualize(
inputs, scores, objectness, inds,
step * len(inputs['pc_1']) + a,
mem_id=a, b_id=b
)
if self.args.use_semantics:
self._visualize_sem(
inputs, scores, objectness, sem_logits,
step * len(inputs['pc_1']) + a,
mem_id=a, b_id=b
)
# Post-loop: summarize metrics
if not self.args.eval:
# Losses
self.writer.add_scalar(
f'loss/{mode}', total_loss / len(self.data_loaders),
epoch
)
# ARI
self.writer.add_scalar(
f'ARI/{mode}', self.ari_evaluator.get_mean_cls_ari(),
epoch
)
# mAP
if self.args.use_semantics:
self.writer.add_scalar(
f'mAP/{mode}', self.ap_evaluator.get_map(),
epoch
)
# Post-loop: summarize metrics
if self.args.eval:
self.ari_evaluator.print_class_stats()
if self.args.val_with_semantics:
self.ap_evaluator.print_class_stats()
self.iou_evaluator.print_class_stats()
return self.print_metrics(mode)
def print_metrics(self, mode):
if self.args.ft_epoch == 0 or mode in ["test", "val"]:
print('-' * 20)
print('Mode ', mode)
print(self.ari_evaluator)
print('-' * 20)
print("Retriever classification accuracy:")
print(self.retr_acc_evaluator)
print('-' * 20)
print(self.mem_prop_acc_evaluator)
print('-' * 20)
print(self.panop_evaluator)
print('-' * 20)
print(self.ap_evaluator)
print('-' * 20)
print(self.iou_evaluator)
elif self.args.ft_epoch:
print("Train ARI:", self.ari_evaluator.get_mean_cls_ari())
return [
self.ari_evaluator.get_mean_cls_ari(),
self.ap_evaluator.get_map(),
self.iou_evaluator.get_macc(),
self.iou_evaluator.get_miou(),
self.panop_evaluator.get_macro_iou(),
self.panop_evaluator.get_macro_pq()
]
def _init_counters(self):
self.retr_acc_evaluator = AccuracyEvaluator()
self.ap_evaluator = APEvaluator(ALL_CLASSES)
self.ari_evaluator = ARIEvaluator()
self.mem_prop_acc_evaluator = MemoryPropAccEvaluator()
self.iou_evaluator = IoUEvaluator(ALL_CLASSES)
self.panop_evaluator = PerShapePanopticEvaluator(ALL_CLASSES)
def _process_sem_logits(self, sem_logits, inputs):
# sem_logits: list of (B, Q, S)
processed_logits = []
for layer_i in range(len(sem_logits)):
logits = sem_logits[layer_i]
# Keep only the classes of the current level
logits = (
logits
* inputs['sem_lvl_mask'].unsqueeze(1)
- 1e7 * (1 - inputs['sem_lvl_mask']).unsqueeze(1)
)
# Allow class-specific semantic fine-tuning
if self.args.ft_epoch > 0:
logits = (
logits
* inputs['sem_cls_mask'].unsqueeze(1)
- 1e7 * (1 - inputs['sem_cls_mask']).unsqueeze(1)
)
# Propagate the mem init detr query labels using mem labels
if self.args.use_memory and not self.args.no_mem_decoding:
mem_part_labels = F.one_hot(
torch.cat(inputs['part_sem_labels_mem'], -1),
num_classes=ALL_CLASSES
) # [B, memQ, S]
from_mem_mask = torch.zeros_like(logits)
from_mem_mask[:, :mem_part_labels.size(1)] = 1.0
from_mem_logits = torch.zeros_like(logits)
from_mem_logits[:, :mem_part_labels.size(1)] = mem_part_labels
logits = (
logits
* (1 - from_mem_mask)
+ 1e7 * from_mem_logits * from_mem_mask
)
processed_logits.append(logits)
_grad = sem_logits[-1].requires_grad
assert all(lgt.requires_grad == _grad for lgt in processed_logits)
return processed_logits # list of (B, Q, S)
def _compute_loss(self, scores, objectness, sem_logits,
criterion, mask_tgt, label_tgt, label_mem, cls_mask,
is_cross):
if self.args.supervise_last_only:
scores = [scores[-1]]
objectness = [objectness[-1]]
sem_logits = (
[sem_logits[-1]]
if self.args.train_with_semantics
else None
)
loss = 0
inds = None
for layer_i, (sc, obj) in enumerate(zip(scores, objectness)):
if self.args.train_with_semantics:
s_logit = sem_logits[layer_i]
else:
s_logit = None
loss_, inds = criterion(
sc, obj, mask_tgt,
sem_logits=s_logit,
tgt_labels=label_tgt,
cls_mask=cls_mask,
is_cross=is_cross,
use_identity_for_within=self.args.model in (
'analogical_nets', 'multi_mem'
)
)
loss = loss + loss_
return loss, inds # only last inds for visualization
def _visualize_lbl_pc(self, pc, scores, inds=None,
filter_objectness=False, objectness=None,
use_only_mem=False, mem_id=0,
filter_score=False, add_anchor_offset=False,
parts_per_mem=(0, 16)):
color_ids = scores.argmax(1).cpu()
if filter_score:
# Show only confident points
color_ids[scores.max(1)[0].cpu() < 0.2] = -1
if filter_objectness and objectness is not None:
# Show only confident queries
for o, obj in enumerate(objectness):
if obj < 0.5:
color_ids[color_ids == o] = 31
if inds is not None:
# Plot target with parsed colors
new_colors = -torch.ones_like(color_ids)
for matched, gt in zip(inds[0], inds[1]):
new_colors[color_ids == gt] = matched
color_ids = new_colors
elif use_only_mem:
# Use only the memory queries
color_ids[color_ids < parts_per_mem[0]] = -1
color_ids[color_ids > parts_per_mem[1] - 1] = -1
elif add_anchor_offset:
# Plot as is - add offset for correspondences
color_ids += mem_id * parts_per_mem[0]
return visualize_mesh(
pc=pc.cpu().numpy(),
color_ids=color_ids.cpu().numpy()
)
def _visualize(
self, inputs, scores,
objectness, inds, step, mem_id=0, b_id=0
):
# Parse inputs/predictions
pc1 = inputs['pc_1'][mem_id][b_id][..., :3]
pc2 = inputs['pc_2'][b_id][..., :3]
p1 = inputs['pad_1'][b_id][mem_id].sum()
p2 = inputs['pad_2'][b_id].sum()
parts_per_mem = (
inputs['pad_1'][b_id][:mem_id].sum().item() if mem_id else 0,
p1.item(), # parts of current memory
)
tgt = inputs['mask_2'].float()
tgt1 = inputs['mask_1'][mem_id].float()
logits = (
scores[-1][b_id].sigmoid()
* objectness[-1][b_id][None].sigmoid()
)
# Raw input
vislist_target = self._visualize_lbl_pc(
pc2, tgt[b_id][:, :p2],
filter_objectness=True, objectness=torch.zeros(p2)
)
# Memory ground-truth
vislist_gt1 = self._visualize_lbl_pc(
pc1, tgt1[b_id][:, :p1], mem_id=mem_id, filter_score=True,
add_anchor_offset=True, parts_per_mem=parts_per_mem
)
# Predictions of memory queries alone
vislist_pred_init = self._visualize_lbl_pc(
pc2,
logits,
mem_id=mem_id,
use_only_mem=True,
parts_per_mem=parts_per_mem
)
# All predictions
vislist_pred = self._visualize_lbl_pc(
pc2,
logits,
mem_id=mem_id
)
# Target ground-truth
vislist_gt2 = self._visualize_lbl_pc(
pc2, tgt[b_id][:, :p2],
inds=inds[b_id],
filter_score=True
)
color = torch.zeros_like(pc2).cpu()
color_ids = tgt[b_id][:, :p2].argmax(1)
color = COLORS[color_ids.cpu()]
color = (color * 255).astype(int)
color = torch.from_numpy(color)
labelled_pc_plot = torch.cat((pc2.cpu(), color.cpu()), -1)
wandb.log({'target': wandb.Object3D({
"type": "lidar/beta",
"points": labelled_pc_plot.cpu().numpy()
})}, step=step)
wandb.log({
"input_mem_pred_gt": [
wandb.Image(np.concatenate(vislist_target)),
wandb.Image(np.concatenate(vislist_gt1)),
wandb.Image(np.concatenate(vislist_pred_init)),
wandb.Image(np.concatenate(vislist_pred)),
wandb.Image(np.concatenate(vislist_gt2))
]
}, step=step)
def _visualize_sem(
self, inputs, scores,
objectness, sem_logits, step, mem_id=0, b_id=0
):
# Parse inputs/predictions
pc1 = inputs['pc_1'][mem_id][b_id][..., :3]
pc2 = inputs['pc_2'][b_id][..., :3]
tgt = torch.matmul(
inputs['mask_2'][b_id].float(), # (P, Nparts)
inputs['part_sem_labels'][b_id][..., None].float() # (Nparts, 1)
).squeeze(-1) # (P,)
tgt = F.one_hot(tgt.long(), ALL_CLASSES) # (P, C)
tgt1 = torch.matmul(
inputs['mask_1'][mem_id][b_id].float(),
inputs['part_sem_labels_mem'][mem_id][b_id][..., None].float()
).squeeze(-1) # (P,)
tgt1 = F.one_hot(tgt1.long(), ALL_CLASSES) # (P, C)
mask_logits = (
scores[-1][b_id].sigmoid()
* objectness[-1][b_id][None].sigmoid()
) # (P, Q)
scores_1hot = F.one_hot(mask_logits.argmax(-1), mask_logits.size(-1))
sem_pred = sem_logits[-1].argmax(-1).float() # (B, Q)
pc_sem_pred = torch.matmul(
scores_1hot.float(), # (P, Q)
sem_pred[b_id].unsqueeze(-1) # (Q, 1)
).squeeze(-1) # (P,)
logits = F.one_hot(pc_sem_pred.long(), ALL_CLASSES) # (P, C)
# Raw input
vislist_target = self._visualize_lbl_pc(
pc2, tgt,
filter_objectness=True, objectness=torch.zeros(ALL_CLASSES)
)
# Memory ground-truth
vislist_gt1 = self._visualize_lbl_pc(
pc1, tgt1, filter_score=True
)
# All predictions
vislist_pred = self._visualize_lbl_pc(
pc2,
logits,
mem_id=mem_id
)
# Target ground-truth
vislist_gt2 = self._visualize_lbl_pc(
pc2, tgt,
filter_score=True
)
wandb.log({
"input_mem_pred_gt_sem": [
wandb.Image(np.concatenate(vislist_target)),
wandb.Image(np.concatenate(vislist_gt1)),
wandb.Image(np.concatenate(vislist_pred)),
wandb.Image(np.concatenate(vislist_gt2))
]
}, step=step)
def parse_args():
# Parse arguments
argparser = argparse.ArgumentParser()
argparser.add_argument("--run_name", default="analogical")
argparser.add_argument("--checkpoint", default="shapenet_ss.pt")
# Paths
argparser.add_argument("--checkpoint_path", default="checkpoints/")
argparser.add_argument("--feat_path",
default="/projects/katefgroup/part_based/")
argparser.add_argument(
"--label_path",
default="/projects/katefgroup/part_based/partnet_dataset/stats/after_merging_label_ids/"
)
argparser.add_argument(
"--anno_path",
default=(
'/projects/katefgroup/datasets/partnet/partnet_analogical/'
)
)
# Training arguments
argparser.add_argument("--epochs", default=200, type=int)
argparser.add_argument("--batch_size", default=32, type=int)
argparser.add_argument("--lr", default=1e-4, type=float)
argparser.add_argument("--weight_decay", default=0.0, type=float)
argparser.add_argument("--bootstrap", default=None)
# Loss arguments
argparser.add_argument("--hungarian", action='store_true')
argparser.add_argument("--supervise_last_only", action='store_true')
argparser.add_argument("--negative_obj_weight", default=1.0, type=float)
argparser.add_argument("--background_coef", default=0.1, type=float)
argparser.add_argument("--train_with_semantics", action='store_true')
# Dataset arguments
argparser.add_argument("--dataset", default="partnet")
argparser.add_argument("--train_split", default="multicat20")
argparser.add_argument("--val_split", default=None)
argparser.add_argument("--test_split", default="multicatnovel4")
argparser.add_argument("--fold", default=None, type=int)
argparser.add_argument("--k_shot", default=5, type=int)
argparser.add_argument("--k_shot_seed", default=None, type=int)
argparser.add_argument("--cross_instance", action='store_true')
argparser.add_argument("--same_wild_augment_train", action='store_true')
# Memory arguments
argparser.add_argument("--retriever_ckpt", default='', type=str)
argparser.add_argument("--retriever_train_mode", default='random')
argparser.add_argument("--retriever_val_mode", default='random')
argparser.add_argument("--train_top_mem_pool_size", default=20, type=int)
argparser.add_argument("--val_top_mem_pool_size", default=1, type=int)
# Evaluation arguments
argparser.add_argument("--eval", action='store_true')
argparser.add_argument("--eval_train", action='store_true')
argparser.add_argument("--eval_test", action='store_true')
argparser.add_argument("--eval_multitask", default=1, type=int,
help='repeat eval n times with diff fewshot set')
argparser.add_argument("--ft_epoch", default=0, type=int,
help='finetune n epochs on training fewshot set')
argparser.add_argument("--visualize_wandb", action='store_true')
argparser.add_argument("--val_with_semantics", action='store_true')
argparser.add_argument("--compute_pq", action='store_true')
argparser.add_argument("--eval_forgetting", action='store_true')
argparser.add_argument("--use_finetuned", action='store_true')
# Model variants
argparser.add_argument("--model", default='baseline', type=str)
argparser.add_argument("--feat_dim", default=256, type=int)
argparser.add_argument("--queries", default=0, type=int)
argparser.add_argument("--pre_norm", action='store_true')
argparser.add_argument("--num_memories", default=1, type=int)
argparser.add_argument("--rotary_pe", action='store_true')
argparser.add_argument("--no_mem_decoding", action='store_true')
args = argparser.parse_args()
args.ckpnt = osp.join(args.checkpoint_path, args.checkpoint)
if args.bootstrap is not None:
args.bootstrap = osp.join(args.checkpoint_path, args.bootstrap)
args.retriever_ckpt = osp.join(args.checkpoint_path, args.retriever_ckpt)
args.eval = args.eval or args.eval_train or args.eval_test
args.hungarian = args.hungarian or args.queries > 0
args.use_memory = args.model not in {'partnet_model', 'xy_3ddetr'}
if args.val_split is None:
args.val_split = args.train_split
if args.k_shot_seed:
args.train_top_mem_pool_size = args.k_shot
args.use_semantics = args.train_with_semantics or args.val_with_semantics
# Other variables
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
args.device = device
os.makedirs(args.checkpoint_path, exist_ok=True)
assert args.k_shot_seed != 0, "Choose any other seed id"
return args
def fetch_loaders(args):
# Path has all_categories of partnet with max parts in each sample <=16
if args.dataset == 'partnet':
from src.partnet_dataset import PartNetDataset
DatasetClass = PartNetDataset
PATH = args.anno_path
PATH_LABEL = args.label_path
datasets = DatasetClass(
categories=[
args.test_split if args.k_shot_seed and not args.eval_forgetting
else args.train_split,
args.test_split if args.k_shot_seed and not args.eval_forgetting
else args.val_split,
args.test_split
],
fold=args.fold,
k_shot_seed=args.k_shot_seed,
k_shot=args.k_shot,
ann_path=PATH,
label_path=PATH_LABEL,
use_memory=args.use_memory,
cross_instance=args.cross_instance,
retriever_mode=[
args.retriever_train_mode,
args.retriever_val_mode,
args.retriever_val_mode
],
retriever_ckpt=args.retriever_ckpt,
num_memories=args.num_memories,
top_mem_pool_size=[
args.train_top_mem_pool_size,
args.val_top_mem_pool_size,
args.val_top_mem_pool_size
],
feat_path=args.feat_path,
return_sem_labels=args.use_semantics,
same_wild_augment_train=args.same_wild_augment_train
)
print(
"Dataloaders sample nums : train, val, test ",
len(datasets.instances['train']),
len(datasets.instances['val']),
len(datasets.instances['test'])
)
data_loaders = DataLoader(
datasets,
batch_size=args.batch_size,
shuffle=(not args.eval or args.ft_epoch > 0),
drop_last=False,
num_workers=4,
collate_fn=custom_collate
)
return data_loaders
def init_model(args):
# Models
if args.model == 'xy_3ddetr':
from models.xy3ddetr import XY3DDETR
model = XY3DDETR(
in_dim=0,
out_dim=args.feat_dim,
num_query=args.queries,
num_classes=ALL_CLASSES,
predict_classes=args.use_semantics,
rotary_pe=args.rotary_pe,
pre_norm=args.pre_norm
)
elif args.model == 'analogical_nets':
from models.analogical_networks import AnalogicalNetworks
model = AnalogicalNetworks(
in_dim=0,
out_dim=args.feat_dim,
num_query=args.queries,
mem_decodes=not args.no_mem_decoding,
num_classes=ALL_CLASSES,
predict_classes=args.use_semantics,
rotary_pe=args.rotary_pe,
pre_norm=args.pre_norm
)
elif args.model == 'multi_mem' and args.num_memories > 1:
from models.analogical_networks_mm import AnalogicalNetworksMultiMem
model = AnalogicalNetworksMultiMem(
in_dim=0,
out_dim=args.feat_dim,
num_query=args.queries,
mem_decodes=not args.no_mem_decoding,
num_classes=ALL_CLASSES,
predict_classes=args.use_semantics,
rotary_pe=args.rotary_pe,
pre_norm=args.pre_norm
)
else:
assert False, 'unknown model name'
return model
def main():
"""Run main training/test pipeline."""
args = parse_args()
print("Args : ", args)
data_loaders = fetch_loaders(args)
model = init_model(args)
trainer = Trainer(model.to(args.device), data_loaders, args)
# Train/test
trainer.run()
if __name__ == "__main__":
main()