-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_sample.py
67 lines (54 loc) · 2.57 KB
/
visualize_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import hydra
import torch.backends.cudnn as cudnn
import torch.cuda
from omegaconf import DictConfig
import numpy as np
import os
SAVE_DIR = './visualization/demo/'
cudnn.benchmark = True
@hydra.main(version_base=None, config_path='./config', config_name='eval_model')
def main(cfg: DictConfig):
model = hydra.utils.instantiate(cfg.model, _recursive_=False)
if torch.cuda.is_available():
model.cuda()
sample_dataset = hydra.utils.instantiate(cfg.dataloader.dataset.test_dataset)
state_dict = torch.load(cfg.ckpt_path)['model']
new_state_dict = {}
for k, v in state_dict.items():
k = k[7:]
new_state_dict[k] = v
model.load_state_dict(new_state_dict, strict=True)
model.eval()
for idx in cfg.sample_indices:
file_id = f'{idx:06d}'
imgL = sample_dataset[idx]['left'][None, ...]
imgR = sample_dataset[idx]['right'][None, ...]
colored_cloud_gt = torch.from_numpy(
np.frombuffer(sample_dataset[idx]['point_cloud'], dtype=np.float32).reshape(-1, 6))
calib_meta = {'T_world_cam_101': sample_dataset[idx]['T_world_cam_101'][None, ...],
'T_world_cam_103': sample_dataset[idx]['T_world_cam_103'][None, ...],
'cam_101': torch.from_numpy(sample_dataset[idx]['cam_101'])[None, ...],
'cam_103': torch.from_numpy(sample_dataset[idx]['cam_103'])[None, ...],
'left_top': torch.from_numpy(sample_dataset[idx]['left_top'])[None, ...]}
'''
# visualize ground truth labels
voxel_gt = sample_dataset[idx]['voxel_grid']
np.savez(os.path.join(SAVE_DIR, f'gt_{file_id}.npz'), colored_pc_gt=colored_cloud_gt,
level_0=voxel_gt[0].numpy(), level_1=voxel_gt[1].numpy(), level_2=voxel_gt[2].numpy(),
level_3=voxel_gt[3].numpy())
'''
if torch.cuda.is_available():
imgL = imgL.cuda()
imgR = imgR.cuda()
with torch.no_grad():
voxel_ests = model(imgL, imgR, calib_meta=calib_meta, training=False)
for voxel_pred in voxel_ests:
voxel_pred[voxel_pred < 0.5] = 0
voxel_pred[voxel_pred >= 0.5] = 1
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR)
np.savez(os.path.join(SAVE_DIR, f'vox_{file_id}.npz'), colored_pc_gt=colored_cloud_gt,
level_0=voxel_ests[0].cpu().numpy(), level_1=voxel_ests[1].cpu().numpy(),
level_2=voxel_ests[2].cpu().numpy(), level_3=voxel_ests[3].cpu().numpy())
if __name__ == '__main__':
main()