-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ddp.py
435 lines (367 loc) · 19.1 KB
/
train_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
from __future__ import print_function, division
import sys
import os
import gc
import time
# import torch.nn as nn
import torch.utils.data
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data.distributed
import torch.backends.cudnn as cudnn
# import torch.distributed as dist
import torch.multiprocessing as mp
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from models import model_loss, model_iou
from utils import *
import logging
import coloredlogs
import wandb
import hydra
from omegaconf import DictConfig
import utils
cudnn.benchmark = True
log = logging.getLogger(__name__)
coloredlogs.install(level='DEBUG', logger=log)
torch.autograd.set_detect_anomaly(False)
# scaler = torch.cuda.amp.GradScaler(growth_interval=100)
@hydra.main(version_base=None, config_path='./config', config_name='train')
def main(cfg: DictConfig):
# parse arguments, set seeds
# torch.manual_seed(args.seed)
torch.manual_seed(cfg.trainer.seed)
torch.cuda.manual_seed(cfg.trainer.seed)
if cfg.dist.dist_url == "env://" and cfg.dist.world_size == -1:
cfg.dist.world_size = int(os.environ["WORLD_SIZE"])
cfg.trainer.distributed = cfg.dist.world_size > 1 or cfg.dist.multiprocessing_distributed
if torch.cuda.is_available():
ngpus_per_node = torch.cuda.device_count()
else:
ngpus_per_node = 1
config = {
"lr": cfg.optimizer.lr,
"bs": cfg.dataloader.batch_size,
'loss': cfg.trainer.loss,
'bbone': cfg.model.backbone.name,
'bblayer': cfg.model.backbone.layer,
'attn': cfg.model.decoder_layer.attn_name
}
if cfg.dist.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
cfg.dist.world_size = ngpus_per_node * cfg.dist.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, cfg, config))
else:
# Simply call main_worker function
# main_worker(cfg.dist.gpu, ngpus_per_node, cfg, config)
main_worker(0, ngpus_per_node, cfg, config)
def main_worker(gpu, ngpus_per_node, cfg, config=None):
cfg.dist.gpu = gpu
log.info('Using GPU: {}'.format(cfg.dist.gpu))
if cfg.trainer.distributed:
if cfg.dist.dist_url == "env://" and cfg.dist.rank == -1:
cfg.dist.rank = int(os.environ["RANK"])
if cfg.dist.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
cfg.dist.rank = cfg.dist.rank * ngpus_per_node + gpu
dist_url = cfg.dist.dist_url + ':' + str(cfg.dist.port)
dist.init_process_group(backend=cfg.dist.dist_backend, init_method=dist_url,
world_size=cfg.dist.world_size, rank=cfg.dist.rank)
if utils.is_main_process():
log.info("===========" + cfg.model._target_.split('.')[-1] + "===========")
log_info = ""
for ix in range(1, len(sys.argv)):
if not (sys.argv[ix].startswith('dist') or sys.argv[ix].startswith('trainer.logdir')):
if ix == len(sys.argv) - 1:
log_info += '{}'.format(sys.argv[ix])
else:
log_info += '{}_'.format(sys.argv[ix])
log_info = log_info.replace('/', '.')
log_info = log_info.replace('=', '#')
log_info += '\n'
cfg.trainer.loss_weights = [float(item) for item in cfg.trainer.loss_weights.split(',')]
if utils.is_main_process():
logdir = os.path.join(cfg.trainer.logdir, cfg.trainer.logdir_name) + '#'
counter = 0
while os.path.exists(logdir + str(counter) + '/'):
counter += 1
logdir += str(counter)
cfg.trainer.logdir = logdir
os.makedirs(cfg.trainer.logdir, mode=0o770, exist_ok=True)
with open(cfg.trainer.logdir + '/setting.info', 'w+') as f:
f.write(log_info)
# create summary logger
logger = SummaryWriter(cfg.trainer.logdir)
model = hydra.utils.instantiate(cfg.model, _recursive_=False)
if utils.is_main_process():
log.info(model)
log.info('Number of parameters: {:.6f}M'.format(sum([p.data.nelement() for p in model.parameters()]) / 1000000))
log.info('loss weights: {}'.format(cfg.trainer.loss_weights))
log.info(f"Saving log at directory {cfg.trainer.logdir}")
if cfg.trainer.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if torch.cuda.is_available():
if cfg.dist.gpu is not None:
torch.cuda.set_device(cfg.dist.gpu)
model.cuda(cfg.dist.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs of the current node.
cfg.dataloader.batch_size = int(cfg.dataloader.batch_size / ngpus_per_node)
cfg.dataloader.test_batch_size = 1 # max(1, int(cfg.dataloader.test_batch_size / ngpus_per_node))
cfg.dataloader.workers = int((cfg.dataloader.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[cfg.dist.gpu],
find_unused_parameters=True)
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
# model = torch.compile(model)
else:
model = torch.nn.DataParallel(model).cuda()
device = 'cpu'
if torch.cuda.is_available():
if cfg.dist.gpu != -1:
device = torch.device('cuda:{}'.format(cfg.dist.gpu))
else:
device = torch.device('cuda')
else:
raise ValueError('No GPUs found.')
train_dataset = hydra.utils.instantiate(cfg.dataloader.dataset.train_dataset)
test_dataset = hydra.utils.instantiate(cfg.dataloader.dataset.test_dataset)
if cfg.trainer.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, drop_last=True)
test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset, shuffle=False, drop_last=True)
else:
train_sampler = None
test_sampler = None
TrainImgLoader = DataLoader(
train_dataset, cfg.dataloader.batch_size, shuffle=(train_sampler is None),
num_workers=cfg.dataloader.workers, pin_memory=True, persistent_workers=True, prefetch_factor=4,
sampler=train_sampler)
TestImgLoader = DataLoader(
test_dataset, cfg.dataloader.test_batch_size, shuffle=False,
num_workers=cfg.dataloader.workers, pin_memory=True, persistent_workers=True, prefetch_factor=4,
sampler=test_sampler)
optimizer = hydra.utils.instantiate(cfg.optimizer, params=model.parameters())
T_max = cfg.trainer.epochs * len(TrainImgLoader)
if cfg.trainer.lr_scheduler == 'none':
lr_scheduler = None
elif cfg.trainer.lr_scheduler == 'onecyc_linear':
lr_scheduler = optim.lr_scheduler.OneCycleLR(
optimizer, cfg.optimizer.lr, T_max + 100,
pct_start=0.05,
cycle_momentum=False, anneal_strategy='linear')
elif cfg.trainer.lr_scheduler == 'onecyc_cos':
lr_scheduler = optim.lr_scheduler.OneCycleLR(
optimizer, cfg.optimizer.lr, T_max + 100,
pct_start=0.05, cycle_momentum=False, anneal_strategy='cos')
elif cfg.trainer.lr_scheduler == 'cos':
lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=1e-8)
else:
raise ValueError('Not supported lr scheduler: {}'.format(cfg.trainer.lr_scheduler))
if utils.is_main_process() and cfg.use_wandb:
wandb_run_id = wandb.util.generate_id()
# load parameters
start_epoch = 0
all_saved_ckpts = [fn for fn in os.listdir(
cfg.trainer.logdir) if fn.endswith(".ckpt") and ("best" not in fn)]
if cfg.trainer.resume and len(all_saved_ckpts) > 0:
# find all checkpoints file and sort according to epoch id
all_saved_ckpts = sorted(all_saved_ckpts, key=lambda x: int(x.split('_')[-1].split('.')[0]))
wandb_run_id = all_saved_ckpts[-1].split('_')[0]
# use the latest checkpoint file
loadckpt = os.path.join(cfg.trainer.logdir, all_saved_ckpts[-1])
if utils.is_main_process():
log.info("Loading the latest model in logdir: {}".format(loadckpt))
if cfg.dist.gpu == -1:
state_dict = torch.load(loadckpt)
elif torch.cuda.is_available():
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(cfg.dist.gpu)
state_dict = torch.load(loadckpt, map_location=loc)
model.load_state_dict(state_dict['model'])
optimizer.load_state_dict(state_dict['optimizer'])
start_epoch = state_dict['epoch'] + 1
elif cfg.trainer.loadckpt:
# load the checkpoint file specified by args.loadckpt
if utils.is_main_process():
log.info("Loading model {}".format(cfg.trainer.loadckpt))
if cfg.dist.gpu == -1:
state_dict = torch.load(cfg.trainer.loadckpt)
elif torch.cuda.is_available():
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(cfg.dist.gpu)
state_dict = torch.load(cfg.trainer.loadckpt, map_location=loc)
model.load_state_dict(state_dict['model'])
if utils.is_main_process():
log.info("Start at epoch {}".format(start_epoch))
if utils.is_main_process() and cfg.use_wandb:
# log inside wandb
if cfg.trainer.resume:
wandb.init(project="odtformer", entity="jerrydty", id=wandb_run_id, resume=True)
else:
wandb.init(project="odtformer", entity="jerrydty", id=wandb_run_id)
wandb.run.name = log_info
wandb.save()
best_checkpoint_loss = float('inf')
for epoch_idx in range(start_epoch, cfg.trainer.epochs):
# training
avg_train_scalars = AverageMeterDict()
avg_train_iou = AverageMeterDict()
for batch_idx, sample in enumerate(TrainImgLoader):
global_step = len(TrainImgLoader) * epoch_idx + batch_idx
start_time = time.time()
do_summary = global_step % cfg.trainer.summary_freq == 0
loss, scalar_outputs, voxel_outputs, iou_dict = train_sample(
model, sample, optimizer, lr_scheduler, cfg, device
)
if utils.is_main_process():
if do_summary:
save_scalars(logger, 'train', scalar_outputs, global_step)
last_lr = cfg.optimizer.lr
if lr_scheduler is not None:
last_lr = lr_scheduler.get_last_lr()[0]
log.info(
'Epoch {}/{}, Iter {}/{}, train loss = {:.3f}, IoU = {:.3f}, lr: {:.9f}, time = {:.3f}'.format(
epoch_idx,
cfg.trainer.epochs,
batch_idx,
len(TrainImgLoader),
loss,
iou_dict["sum"],
last_lr,
time.time() - start_time))
if cfg.use_wandb:
wandb.log({"train_IoU": iou_dict['sum'], "train_loss": loss})
avg_train_scalars.update(scalar_outputs)
avg_train_iou.update(iou_dict)
del scalar_outputs, voxel_outputs, iou_dict
# saving checkpoints
if (epoch_idx + 1) % cfg.trainer.save_freq == 0:
checkpoint_data = {'epoch': epoch_idx, 'model': model.state_dict(
), 'optimizer': optimizer.state_dict()}
torch.save(
checkpoint_data,
"{}/{}_checkpoint_{:0>6}.ckpt".format(cfg.trainer.logdir, wandb_run_id, epoch_idx))
if utils.is_main_process():
avg_train_scalars = avg_train_scalars.mean()
avg_train_iou = avg_train_iou.mean()
log.info(f"avg_train_scalars {avg_train_scalars}")
if cfg.use_wandb:
wandb.log({'avg_train_loss': avg_train_scalars['loss'], 'weighted_avg_train_IoU': avg_train_iou['sum'],
'train_last_level_IoU': avg_train_iou['last']})
gc.collect()
# testing
avg_test_scalars = AverageMeterDict()
avg_test_iou = AverageMeterDict()
for batch_idx, sample in enumerate(TestImgLoader):
global_step = len(TestImgLoader) * epoch_idx + batch_idx
start_time = time.time()
do_summary = global_step % cfg.trainer.summary_freq == 0
do_vis_log = batch_idx % cfg.trainer.vis_log_freq == 0
test_loss_tensor, test_iou_tensor, test_loss, scalar_outputs, voxel_outputs, iou_dict = test_sample(
model, sample, cfg, device
)
if utils.is_main_process():
if do_summary:
save_scalars(logger, 'test', scalar_outputs, global_step)
log.info(
'Epoch {}/{}, Iter {}/{}, test loss = {:.3f}, IoU = {:.3f}, time = {:.3f}'.format(epoch_idx,
cfg.trainer.epochs,
batch_idx,
len(
TestImgLoader),
test_loss,
iou_dict[
"sum"],
time.time() - start_time))
if do_vis_log and cfg.use_wandb:
all_cloud_gt = np.frombuffer(sample['point_cloud'][0], dtype=np.float32).reshape(-1, 3)
voxel_est, voxel_gt = voxel_outputs
start = [cfg.dataloader.roi[0], cfg.dataloader.roi[2], cfg.dataloader.roi[4]]
# change by level
voxel_size = cfg.dataloader.vox[1]
corners_gt = utils.get_voxel_bbox(voxel_gt, start, [12, 4, 20], voxel_size)
corners_est = utils.get_voxel_bbox(voxel_est, start, [12, 4, 20], voxel_size,
bbox_size=voxel_size / 2, color=[0, 255, 255])
#################
cloud_gt = utils.get_cmap_cloud(all_cloud_gt, cfg.dataloader.roi)
point_scene = wandb.Object3D(
{'type': 'lidar/beta', 'boxes': np.concatenate([corners_gt, corners_est], axis=0),
'points': cloud_gt})
wandb.log({f'test_point_scene / epoch {epoch_idx}': point_scene})
avg_test_scalars.update(scalar_outputs)
avg_test_iou.update(iou_dict)
del scalar_outputs, voxel_outputs, iou_dict
if utils.is_main_process():
avg_test_scalars = avg_test_scalars.mean()
avg_test_iou = avg_test_iou.mean()
save_scalars(logger, 'fulltest', avg_test_scalars,
len(TrainImgLoader) * (epoch_idx + 1))
log.info(f"avg_test_scalars {avg_test_scalars}")
if cfg.use_wandb:
wandb.log({'avg_test_loss': avg_test_scalars['loss'], 'weighted_avg_test_IoU': avg_test_iou['sum'],
'test_last_level_IoU': avg_test_iou['last']})
# saving new best checkpoint
if avg_test_scalars['loss'] < best_checkpoint_loss:
best_checkpoint_loss = avg_test_scalars['loss']
log.debug("Overwriting best checkpoint")
checkpoint_data = {'epoch': epoch_idx, 'model': model.state_dict(
), 'optimizer': optimizer.state_dict()}
torch.save(checkpoint_data, "{}/best.ckpt".format(cfg.trainer.logdir))
gc.collect()
# train one sample
def train_sample(model, sample, optimizer, lr_scheduler, cfg, device):
model.train()
imgL, imgR, voxel_gt_list = sample['left'], sample['right'], sample['voxel_grid']
calib_meta = {'T_world_cam_101': sample['T_world_cam_101'], 'T_world_cam_103': sample['T_world_cam_103'],
'cam_101': sample['cam_101'], 'cam_103': sample['cam_103']}
if torch.cuda.is_available():
imgL = imgL.to(device, non_blocking=True)
imgR = imgR.to(device, non_blocking=True)
for i in range(len(voxel_gt_list)):
voxel_gt_list[i] = voxel_gt_list[i].to(device, non_blocking=True)
optimizer.zero_grad()
# with torch.cuda.amp.autocast():
voxel_ests = model(imgL, imgR, calib_meta=calib_meta)
loss, iou = model_loss(voxel_ests, voxel_gt_list, cfg.trainer.loss_weights, cfg.trainer.loss)
iou_dict = model_iou(voxel_ests, voxel_gt_list, cfg.trainer.loss_weights)
scalar_outputs = {"loss": loss}
voxel_outputs = []
loss.backward()
optimizer.step()
# scaler.scale(loss).backward()
# scaler.step(optimizer)
if lr_scheduler is not None:
lr_scheduler.step()
# scaler.update()
return tensor2float(loss), tensor2float(scalar_outputs), voxel_outputs, tensor2float(iou_dict)
# test one sample
@make_nograd_func
def test_sample(model, sample, cfg, device):
model.eval()
imgL, imgR, voxel_gt = sample['left'], sample['right'], sample['voxel_grid']
calib_meta = {'T_world_cam_101': sample['T_world_cam_101'], 'T_world_cam_103': sample['T_world_cam_103'],
'cam_101': sample['cam_101'], 'cam_103': sample['cam_103']}
if torch.cuda.is_available():
imgL = imgL.to(device, non_blocking=True)
imgR = imgR.to(device, non_blocking=True)
for i in range(len(voxel_gt)):
voxel_gt[i] = voxel_gt[i].to(device, non_blocking=True)
voxel_ests = model(imgL, imgR, calib_meta=calib_meta)
loss, iou = model_loss(voxel_ests, voxel_gt, cfg.trainer.loss_weights, cfg.trainer.loss)
iou_dict = model_iou(voxel_ests, voxel_gt, cfg.trainer.loss_weights)
scalar_outputs = {"loss": loss}
# level, batch
voxel_outputs = [voxel_ests[1][0], voxel_gt[1][0]]
return loss, iou, tensor2float(loss), tensor2float(scalar_outputs), voxel_outputs, tensor2float(iou_dict)
if __name__ == '__main__':
main()