-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcli.py
219 lines (199 loc) · 8.61 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import argparse
import os
import re
import sys
# import torch
from utils import challenge_feedback
from constr_system_prompt import SystemPrompt, SystemPromptECGPPG
import pdb
from caption import inspect_spectrogram, inspect_fft, inspect_ts
import numpy as np
from chat import Agent_with_API, Agent_based_on_text, Agent_with_reflection
global_dict, local_dict = globals(), locals()
def main(args):
if 'speech' in args.query:
args.input_file = ['./benchmark/' + args.query + '/' + args.index + '.wav']
elif 'imputation' in args.query or 'extrapolation' in args.query:
args.input_file = ['./benchmark/' + args.query + '/' + args.index + '_50.npy']
elif 'gait-delay_detection' in args.query:
args.input_file = ['./benchmark/' + args.query + '/' + args.index + '_1.npy', \
'./benchmark/' + args.query + '/' + args.index + '_2.npy']
elif 'gait-period_detection' in args.query:
args.input_file = ['./benchmark/' + args.query + '/' + args.index + '_1.npy']
else:
args.input_file = ['./benchmark/' + args.query + '/' + args.index + '.npy']
assert args.openai in ('gpt-3.5-turbo', 'gpt-4', 'gpt-4o', 'gpt-4-0125-preview', \
'gpt-4-turbo', 'gpt-4o-mini',
'Llama-2-70b', 'Llama-2-13b', 'Llama-2-7b', 'Llama-3-8b', 'Llama-3-70b', \
'Qwen1.5-110B', 'Qwen2-72B')
prefix = ''
if 'Llama' in args.openai:
prefix = 'meta-llama/'
args.openai = prefix + args.openai + '-chat-hf'
elif 'Qwen1.5' in args.openai:
prefix = 'Qwen/'
args.openai = prefix + args.openai + '-Chat'
elif 'Qwen2' in args.openai:
prefix = 'Qwen/'
args.openai = prefix + args.openai + '-Instruct'
elif 'Mixtral' in args.openai:
prefix = 'mistralai/'
args.openai = prefix + args.openai + '-Instruct-v0.1'
if 'ecg' in args.input_file[0]:
args.file = 'ecg_data'
elif 'ppg' in args.input_file[0]:
args.file = 'ppg'
else:
args.file = 'general'
# handle target file formating
target_file = args.input_file[0].split('/')
filename = target_file[-1].split('.')
filename[0] = filename[0] + '_gt'
filename = '.'.join(filename)
target_file[-1] = filename
if 'VoiceDetector' in args.input_file[0]:
target_file[-1] = filename.replace('wav', 'npy')
args.target_file = '/'.join(target_file)
# handle output file formating
output_dir = './llm_response/'
args.output_file = output_dir + f'{args.openai}_{args.query}_{args.index}_{args.num_trial}.' + filename.split('.')[-1]
if not os.path.exists(output_dir + prefix):
os.makedirs(output_dir + prefix)
if 'VoiceDetector' in args.input_file[0]:
args.output_file = output_dir + f'{args.openai}_{args.query}_{args.index}_{args.num_trial}.' + 'npy'
# # file index
# args.index = args.input_file[0].split('/')[-1].split('.')[0].split('_')[0]
# log name
args.log_name = f"{args.openai}_{args.mode}_{args.eval}_#trial_{args.num_trial}"
# update reflection number
if args.adaptive_reflect and \
'extrapolation' in args.input_file[0] or \
'imputation' in args.input_file[0]:
print('Disable reflection since models are incapable of doing so.')
args.num_trial = 1
# pdb.set_trace()
try:
if 'gpt-3' in args.openai or 'gpt-4' in args.openai\
or 'Llama' in args.openai or 'Qwen' in args.openai \
or 'Mixtral' in args.openai:
# model = 'gpt-3.5-turbo' if 'gpt-3' in args.openai else 'gpt-4'
model = args.openai
if 'Llama' in args.openai or 'Qwen' in args.openai or \
'Mixtral' in args.openai:
openai_key = open("together_key.txt").read().strip()
else:
openai_key = open("key.txt").read().strip()
os.environ["OPENAI_API_KEY"] = openai_key
# construct system prompt
args.system_prompt_file = './sys/system_prompt_signal_processing_'+args.mode+'.txt'
if args.mode == 'text':
system_prompt = SystemPromptECGPPG(system_prompt_file=args.system_prompt_file,
length=args.ts_len, mode=args.mode, args=args)
# chat_openai_io_text(openai_key, system_prompt.system_prompt, global_dict, local_dict, model=model, temperature=0.8, top_p=1, args=args)
Agent_based_on_text(openai_key, system_prompt.system_prompt, global_dict, local_dict, model=model, temperature=0.8, top_p=1, args=args)
elif args.mode in ('api', 'no_api', 'CoT', 'react', 'base'):
system_prompt = SystemPrompt(imu_file = args.imu_file,
geo_file=args.geo_file, input_file=args.input_file, system_prompt_file=args.system_prompt_file, args=args)
Agent_with_reflection(openai_key, system_prompt.system_prompt, global_dict, local_dict, model=model, temperature=args.temperature, top_p=args.top_p, args=args)
# Agent_with_API(openai_key, system_prompt.system_prompt, global_dict, local_dict, model=model, temperature=args.temperature, top_p=args.top_p, args=args)
# chat_openai_io(openai_key, system_prompt.system_prompt, global_dict, local_dict, model=model, temperature=args.temperature, top_p=args.top_p, args=args)
except KeyboardInterrupt:
print("exit...")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# default it to use gpt-4o
parser.add_argument(
"--openai", type=str, default='gpt-4o', help="default use gpt-4 model"
)
parser.add_argument(
"--imu_file", type=str, default='./data/sample.csv', help="default imu data"
)
parser.add_argument(
"--geo_file", type=str, default='./data/geo.csv', help="default geolocation data"
)
parser.add_argument(
"--input_file", type=str, default=None, nargs='+', help="default heart rate data"
)
parser.add_argument(
"--target_file", type=str, default=None, help="default heart rate data"
)
parser.add_argument(
"--output_file", type=str, default=None, help="The file that you want the model to produce."
)
parser.add_argument(
"--system_prompt_file", type=str, default='./system_prompt.txt', help="default system prompt"
)
parser.add_argument("--temperature", type=float, default=1)
parser.add_argument("--top_p", type=float, default=1)
parser.add_argument(
"--mode", type=str, default='code', help="Conversational AI mode"
)
parser.add_argument(
"--index", type=str, default=None, help="file index"
)
parser.add_argument(
"--file", type=str, default=None, help="-"
)
parser.add_argument(
"--ts_len", type=int, default=None, help="Time series sequence length"
)
parser.add_argument(
"--CoT",
action="store_true",
help="Use chain of thought",
)
parser.add_argument(
"--knowledge_signal",
action="store_true",
help="Whether to inject signal knowledge",
)
parser.add_argument(
"--adaptive_reflect",
action="store_true",
help="Adaptively reflect on its solution. When it is True, \
number of reflection will be set to 1 for imputation and extrapolation.",
)
parser.add_argument(
"--knowledge_task",
action="store_true",
)
parser.add_argument(
"--write_to_csv",
action="store_true",
help="write results to csv file",
)
parser.add_argument(
"--query", type=str, default=None, help="user's query for testing"
)
parser.add_argument(
"--encode",
type=str, default='env', help="""
Ways to present sequences to the modes. They include: number, space, and alpabet.
"""
)
parser.add_argument(
"--eval",
type=str, default='self_coding', help="""
Feedback from the environment or self-generated. (env | self_vis | self_coding | self_verifier)
"""
)
parser.add_argument(
"--bw_pred",
type=int, default=0, help="""
Whether we want the model to do backward extrapolation (if bw_pred >= 1)
"""
)
parser.add_argument(
"--num_trial",
type=int, default=1, help="""
How many times can the model reflect and retry
"""
)
parser.add_argument(
"--base_url", type=str, default="https://api.together.xyz/v1", help="together.ai interface"
)
parser.add_argument(
"--log_name", type=str, default="test", help="The type of task we are testing."
)
args = parser.parse_args()
main(args)