-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathyouyakumanJPN_train.py
72 lines (56 loc) · 2.69 KB
/
youyakumanJPN_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import random
import torch
import os
import argparse
from src.models.trainloader import TrainLoader
from src.models.model_builder import Summarizer, build_optim
from src.models.trainer import build_trainer
os.chdir('./')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-data_folder", default='', type=str)
parser.add_argument("-batch_size", default=5, type=int)
parser.add_argument("-train_from", default='', type=str)
parser.add_argument("-save_path", default='', type=str)
parser.add_argument("-train_steps", default=1200000, type=int)
parser.add_argument("-report_every", default=10, type=int)
parser.add_argument("-save_checkpoint_steps", default=1000, type=int)
parser.add_argument("-accum_count", default=2, type=int)
parser.add_argument("-optim", default='adam', type=str)
parser.add_argument("-learning_rate", default=5e-5, type=float)
parser.add_argument("-beta1", default=0.9, type=float)
parser.add_argument("-beta2", default=0.999, type=float)
parser.add_argument("-decay_method", default='no', type=str)
parser.add_argument("-warmup_steps", default=10000, type=int)
parser.add_argument("-ff_size", default=2048, type=int)
parser.add_argument("-heads", default=8, type=int)
parser.add_argument("-dropout", default=0.1, type=float)
parser.add_argument("-param_init", default=0.0, type=float)
parser.add_argument("-param_init_glorot", default=True, type=bool)
parser.add_argument("-max_grad_norm", default=0, type=float)
parser.add_argument("-inter_layers", default=2, type=int)
parser.add_argument("-seed", default='')
args = parser.parse_args()
model_flags = ['hidden_size', 'ff_size', 'heads', 'inter_layers', 'encoder', 'ff_actv', 'use_interval', 'rnn_size']
device = "cuda"
device_id = -1
if args.seed:
torch.manual_seed(args.seed)
random.seed(args.seed)
def train_loader_fct():
return TrainLoader(args.data_folder, 512, args.batch_size, device=device, shuffle=True)
model = Summarizer(args, './model/Japanese/', device, train=True)
if args.train_from != '':
print('Loading checkpoint from %s' % args.train_from)
checkpoint = torch.load(args.train_from,
map_location=lambda storage, loc: storage)
opt = dict(checkpoint['opt'])
for k in opt.keys():
if k in model_flags:
setattr(args, k, opt[k])
model.load_cp(checkpoint['model'])
optim = build_optim(args, model, checkpoint)
else:
optim = build_optim(args, model, None)
trainer = build_trainer(args, model, optim)
trainer.train(train_loader_fct, args.train_steps)