Skip to content

Commit dc4af06

Browse files
committed
Colaboratory를 통해 생성됨
1 parent 920ca0a commit dc4af06

File tree

1 file changed

+294
-0
lines changed

1 file changed

+294
-0
lines changed
Lines changed: 294 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,294 @@
1+
{
2+
"nbformat": 4,
3+
"nbformat_minor": 0,
4+
"metadata": {
5+
"colab": {
6+
"name": "Numpy의 연산과 함수",
7+
"version": "0.3.2",
8+
"provenance": [],
9+
"collapsed_sections": [],
10+
"include_colab_link": true
11+
},
12+
"kernelspec": {
13+
"name": "python3",
14+
"display_name": "Python 3"
15+
}
16+
},
17+
"cells": [
18+
{
19+
"cell_type": "markdown",
20+
"metadata": {
21+
"id": "view-in-github",
22+
"colab_type": "text"
23+
},
24+
"source": [
25+
"<a href=\"https://colab.research.google.com/github/ndb796/Python-Data-Analysis-and-Image-Processing-Tutorial/blob/master/04.%20Numpy%EC%9D%98%20%EC%97%B0%EC%82%B0%EA%B3%BC%20%ED%95%A8%EC%88%98/Numpy%EC%9D%98%20%EC%97%B0%EC%82%B0%EA%B3%BC%20%ED%95%A8%EC%88%98.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
26+
]
27+
},
28+
{
29+
"cell_type": "markdown",
30+
"metadata": {
31+
"id": "jflbKZvWIewX",
32+
"colab_type": "text"
33+
},
34+
"source": [
35+
"## Numpy의 연산과 함수\n",
36+
"[강의 노트](https://github.com/ndb796/Python-Data-Analysis-and-Image-Processing-Tutorial/blob/master/04.%20Numpy%EC%9D%98%20%EC%97%B0%EC%82%B0%EA%B3%BC%20%ED%95%A8%EC%88%98/Python%20%EB%8D%B0%EC%9D%B4%ED%84%B0%20%EB%B6%84%EC%84%9D%EA%B3%BC%20%EC%9D%B4%EB%AF%B8%EC%A7%80%20%EC%B2%98%EB%A6%AC%20-%20Numpy%EC%9D%98%20%EC%97%B0%EC%82%B0%EA%B3%BC%20%ED%95%A8%EC%88%98.pdf)"
37+
]
38+
},
39+
{
40+
"cell_type": "markdown",
41+
"metadata": {
42+
"id": "YMGeT2gmIqQO",
43+
"colab_type": "text"
44+
},
45+
"source": [
46+
"Python의 Numpy 라이브러리는 기본적인 상수 연산이 가능합니다."
47+
]
48+
},
49+
{
50+
"cell_type": "code",
51+
"metadata": {
52+
"id": "lB3TNlINIn33",
53+
"colab_type": "code",
54+
"colab": {
55+
"base_uri": "https://localhost:8080/",
56+
"height": 52
57+
},
58+
"outputId": "9293f423-94d0-4f3d-f4fa-3f1a5850de8c"
59+
},
60+
"source": [
61+
"import numpy as np\n",
62+
"\n",
63+
"array = np.random.randint(1, 10, size=4).reshape(2, 2)\n",
64+
"result_array = array * 10\n",
65+
"print(result_array)"
66+
],
67+
"execution_count": 1,
68+
"outputs": [
69+
{
70+
"output_type": "stream",
71+
"text": [
72+
"[[10 30]\n",
73+
" [40 80]]\n"
74+
],
75+
"name": "stdout"
76+
}
77+
]
78+
},
79+
{
80+
"cell_type": "markdown",
81+
"metadata": {
82+
"id": "3gXaKkCGI5lG",
83+
"colab_type": "text"
84+
},
85+
"source": [
86+
"**서로 다른 형태의 Numpy 연산**이 가능합니다."
87+
]
88+
},
89+
{
90+
"cell_type": "code",
91+
"metadata": {
92+
"id": "CjFI4tuPI1M2",
93+
"colab_type": "code",
94+
"colab": {
95+
"base_uri": "https://localhost:8080/",
96+
"height": 52
97+
},
98+
"outputId": "74cb0c4d-0e91-4d28-99d7-1b080dfa69be"
99+
},
100+
"source": [
101+
"import numpy as np\n",
102+
"\n",
103+
"array1 = np.arange(4).reshape(2, 2)\n",
104+
"array2 = np.arange(2)\n",
105+
"array3 = array1 + array2\n",
106+
"\n",
107+
"print(array3)"
108+
],
109+
"execution_count": 2,
110+
"outputs": [
111+
{
112+
"output_type": "stream",
113+
"text": [
114+
"[[0 2]\n",
115+
" [2 4]]\n"
116+
],
117+
"name": "stdout"
118+
}
119+
]
120+
},
121+
{
122+
"cell_type": "code",
123+
"metadata": {
124+
"id": "yoaNGmROI8Fk",
125+
"colab_type": "code",
126+
"colab": {
127+
"base_uri": "https://localhost:8080/",
128+
"height": 87
129+
},
130+
"outputId": "d88c62ad-e4ef-49aa-b40b-fbe9a9888ba6"
131+
},
132+
"source": [
133+
"import numpy as np\n",
134+
"\n",
135+
"array1 = np.arange(0, 8).reshape(2, 4)\n",
136+
"array2 = np.arange(0, 8).reshape(2, 4)\n",
137+
"array3 = np.concatenate([array1, array2], axis=0)\n",
138+
"array4 = np.arange(0, 4).reshape(4, 1)\n",
139+
"\n",
140+
"print(array3 + array4)"
141+
],
142+
"execution_count": 3,
143+
"outputs": [
144+
{
145+
"output_type": "stream",
146+
"text": [
147+
"[[ 0 1 2 3]\n",
148+
" [ 5 6 7 8]\n",
149+
" [ 2 3 4 5]\n",
150+
" [ 7 8 9 10]]\n"
151+
],
152+
"name": "stdout"
153+
}
154+
]
155+
},
156+
{
157+
"cell_type": "markdown",
158+
"metadata": {
159+
"id": "HR-bcngHJbo3",
160+
"colab_type": "text"
161+
},
162+
"source": [
163+
"Numpy의 **마스킹 연산**이 가능합니다."
164+
]
165+
},
166+
{
167+
"cell_type": "code",
168+
"metadata": {
169+
"id": "5XWPfcCEJK17",
170+
"colab_type": "code",
171+
"colab": {
172+
"base_uri": "https://localhost:8080/",
173+
"height": 228
174+
},
175+
"outputId": "499685e3-925b-428f-d922-63eab1ef1d82"
176+
},
177+
"source": [
178+
"import numpy as np\n",
179+
"\n",
180+
"# Numpy 원소의 값을 조건에 따라 바꿀 때는 다음과 같이 합니다.\n",
181+
"# 반복문을 이용할 때보다 매우 빠르게 동작합니다.\n",
182+
"# 대체로 이미지 처리(Image Processing)에서 자주 활용됩니다.\n",
183+
"array1 = np.arange(16).reshape(4, 4)\n",
184+
"print(array1)\n",
185+
"\n",
186+
"array2 = array1 < 10\n",
187+
"print(array2)\n",
188+
"\n",
189+
"array1[array2] = 100\n",
190+
"print(array1)"
191+
],
192+
"execution_count": 4,
193+
"outputs": [
194+
{
195+
"output_type": "stream",
196+
"text": [
197+
"[[ 0 1 2 3]\n",
198+
" [ 4 5 6 7]\n",
199+
" [ 8 9 10 11]\n",
200+
" [12 13 14 15]]\n",
201+
"[[ True True True True]\n",
202+
" [ True True True True]\n",
203+
" [ True True False False]\n",
204+
" [False False False False]]\n",
205+
"[[100 100 100 100]\n",
206+
" [100 100 100 100]\n",
207+
" [100 100 10 11]\n",
208+
" [ 12 13 14 15]]\n"
209+
],
210+
"name": "stdout"
211+
}
212+
]
213+
},
214+
{
215+
"cell_type": "markdown",
216+
"metadata": {
217+
"id": "NznH01UXJnpn",
218+
"colab_type": "text"
219+
},
220+
"source": [
221+
"Numpy는 **다양한 집계 함수**가 존재합니다."
222+
]
223+
},
224+
{
225+
"cell_type": "code",
226+
"metadata": {
227+
"id": "iPhu1aBhJR8O",
228+
"colab_type": "code",
229+
"colab": {
230+
"base_uri": "https://localhost:8080/",
231+
"height": 87
232+
},
233+
"outputId": "59d8968e-25cd-4828-c615-098b558c1f00"
234+
},
235+
"source": [
236+
"import numpy as np\n",
237+
"\n",
238+
"array = np.arange(16).reshape(4, 4)\n",
239+
"\n",
240+
"print(\"최대값:\", np.max(array))\n",
241+
"print(\"최소값:\", np.min(array))\n",
242+
"print(\"합계:\", np.sum(array))\n",
243+
"print(\"평균값:\", np.mean(array))"
244+
],
245+
"execution_count": 5,
246+
"outputs": [
247+
{
248+
"output_type": "stream",
249+
"text": [
250+
"최대값: 15\n",
251+
"최소값: 0\n",
252+
"합계: 120\n",
253+
"평균값: 7.5\n"
254+
],
255+
"name": "stdout"
256+
}
257+
]
258+
},
259+
{
260+
"cell_type": "code",
261+
"metadata": {
262+
"id": "2AQxs__jJP-L",
263+
"colab_type": "code",
264+
"colab": {
265+
"base_uri": "https://localhost:8080/",
266+
"height": 105
267+
},
268+
"outputId": "3446db66-a125-4f7e-c832-e1ecc181a17d"
269+
},
270+
"source": [
271+
"import numpy as np\n",
272+
"\n",
273+
"array = np.arange(16).reshape(4, 4)\n",
274+
"\n",
275+
"print(array)\n",
276+
"print(\"합계:\", np.sum(array, axis=0))"
277+
],
278+
"execution_count": 6,
279+
"outputs": [
280+
{
281+
"output_type": "stream",
282+
"text": [
283+
"[[ 0 1 2 3]\n",
284+
" [ 4 5 6 7]\n",
285+
" [ 8 9 10 11]\n",
286+
" [12 13 14 15]]\n",
287+
"합계: [24 28 32 36]\n"
288+
],
289+
"name": "stdout"
290+
}
291+
]
292+
}
293+
]
294+
}

0 commit comments

Comments
 (0)