-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathex55.for
82 lines (82 loc) · 2.54 KB
/
ex55.for
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
C
C***************************** ABSTRACT *******************************
C
C THIS PROGRAM SOLVES THE BVP POSED IN EX 5.3 USING FINITE DIFFER-
C ENCE APPROXIMATIONS WITH AN DIRECT SOLUTION PROCEDURE.
C
C*************************** NOMENCLATURE *****************************
C
C B(I)- THE CONSTANT TERM IN THE ITH EQUATION
C C(I)- THE COEFFICIENT OF THE TERM TO THE LEFT TO THE ITH DIAGONAL
C ELEMENT
C COND- THE THERMAL CONDUCTIVITY OF TIN (KJ/M-SEC-DEG C)
C D(I)- THE ITH DIAGONAL ELEMENT
C DX- THE SEPARATION BETWEEN NODE POINTS (M)
C E(I)- THE COEFFICIENT OF THE TERM TO THE RIGHT OF THE ITH DIAGONAL
C ELEMENT
C H- THE HEAT TRANSFER COEFFICIENT (KJ/M**2-SEC-DEG C)
C N- THE NUMBER OF INDEPENDENT EQUATIONS
C TB- THE AMBIENT AIR TEMPERATURE (DEG C)
C
C************************************************************************
C
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION C(50),D(50),E(50),B(50),X(50),BETA(50),GAM(50)
C SET THE PARAMETERS OF THE PROBLEM
N=19
DX=.05/FLOAT(N+1)
H=4180.
TB=25.
COND=.602
C FORM THE NON-ZERO COEFICIENTS OF THE LINEAR EQUATIONS FOR THE
C INTERIOR NODES
NM=N-1
DO 1 I=2,NM
C(I)=1.
D(I)=-2.
E(I)=1.
1 B(I)=-59340.*DX*DX
C CALCULATE THE COEFICIENTS OF THE NODES ADJACENT TO THE BOUNDARY NODES
Y=H+3.*COND/2./DX
D(1)=2.*COND/DX/Y-2.
E(1)=1.-COND/2./DX/Y
B(1)=-59340.*DX*DX-H*TB/Y
C(N)=2./3.
D(N)=-2./3.
B(N)=-59340.*DX*DX
C CALL THOMAS METHOD FOR SOLUTION
CALL TM(N,C,D,E,B,X,BETA,GAM)
X(N+1)=(4.*X(N)-X(N-1))/3.
NP=N+1
C PRINT OUT RESULTS
WRITE(6,90)
90 FORMAT( 29H X(M) TEMP(DEG C))
DO 100 I=1,NP
Z=DX*FLOAT(I)
100 WRITE(6,110)Z,X(I)
110 FORMAT( 6X,F6.4,7X,F7.3)
STOP
END
C
C************************ ABSTRACT *****************************
C
C THIS SUBROUTINE CALCULATES THE SOLUTION OF A SYSTEM OF LINEAR
C EQUATIONS WHICH HAVE A TRIDIAGONAL COEFICIENT MATRIX USING THE
C THE THOMAS METHOD
C
C************************************************************************
C
SUBROUTINE TM(N,C,D,E,B,X,BETA,GAM)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION C(1),D(1),E(1),B(1),X(1),BETA(1),GAM(1)
BETA(1)=D(1)
GAM(1)=B(1)/BETA(1)
DO 10 I=2,N
BETA(I)=D(I)-C(I)*E(I-1)/BETA(I-1)
10 GAM(I)=(B(I)-C(I)*GAM(I-1))/BETA(I)
X(N)=GAM(N)
DO 20 I=2,N
J=N-I+1
20 X(J)=GAM(J)-E(J)*X(J+1)/BETA(J)
RETURN
END