-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_on_source.py
288 lines (226 loc) · 9.7 KB
/
train_on_source.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
"""
Note: the GitHub repo https://github.com/wasidennis/AdaptSegNet was used
as a starting point to train and test semantic segmetnation models on
the GTA5 and Cityscapes datasets. The reference model architectures are
also from the repo -- see models/*.py
In particularly, this file is a modification of
https://github.com/wasidennis/AdaptSegNet/blob/master/train_gta2cityscapes_multi.py
from which the adaptation part was removed.
"""
import argparse
import torch
import torch.nn as nn
from torch.utils import data, model_zoo
import numpy as np
import numpy.random as npr
import pickle
from torch.autograd import Variable
import torch.optim as optim
import scipy.misc
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import sys
import os
import os.path as osp
import matplotlib.pyplot as plt
import random
from model.deeplab import Res_Deeplab as Deeplab
from utils.loss import CrossEntropy2d
from dataset.gta5_dataset import GTA5
from dataset.gta52cityscapes_dataset import GTA52Cityscapes
from dataset.gta5_dataset_augm import GTA5Augm
IMG_MEAN = np.array(
(104.00698793, 116.66876762, 122.67891434), dtype=np.float32)
DATASET = 'GTA5'
MODEL = 'DeepLab'
BATCH_SIZE = 1
ITER_SIZE = 1
NUM_WORKERS = 4
DATA_DIRECTORY = '/PATH/TO/GTA5/DATA'
DATA_LIST_PATH = './dataset/gta5_list/train.txt'
IGNORE_LABEL = 255
INPUT_SIZE = '1280,720'
LEARNING_RATE = 2.5e-4
MOMENTUM = 0#.9
NUM_CLASSES = 19
NUM_EPOCHS = 5
POWER = 0.9
WEIGHT_DECAY = 0.0005
LAMBDA_SEG = 0.1
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="DeepLab-ResNet Network")
parser.add_argument("--dataset", type=str, default=DATASET,
help="available options : GTA5, GTA52Cityscapes")
parser.add_argument("--model", type=str, default=MODEL,
help="available options : DeepLab")
parser.add_argument("--optimizer", type=str, default='SGD',
help="available options : SGD/Adam/RMSprop")
parser.add_argument("--num_epochs", type=int, default=NUM_EPOCHS,
help="Number of training epochs.")
parser.add_argument("--batch_size", type=int, default=BATCH_SIZE,
help="Number of images sent to the network in one step.")
parser.add_argument("--iter_size", type=int, default=ITER_SIZE,
help="Accumulate gradients for ITER_SIZE iterations.")
parser.add_argument("--num_workers", type=int, default=NUM_WORKERS,
help="number of workers for multithread dataloading.")
parser.add_argument("--data_dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the source dataset.")
parser.add_argument("--data_list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the source dataset.")
parser.add_argument("--ignore_label", type=int, default=IGNORE_LABEL,
help="The index of the label to ignore during the training.")
parser.add_argument("--input_size", type=str, default=INPUT_SIZE,
help="Comma-separated string with height and width of source images.")
parser.add_argument("--learning_rate", type=float, default=LEARNING_RATE,
help="Base learning rate for training with polynomial decay.")
parser.add_argument("--lambda_seg", type=float, default=LAMBDA_SEG,
help="lambda_seg.")
parser.add_argument("--momentum", type=float, default=MOMENTUM,
help="Momentum component of the optimiser.")
parser.add_argument("--not_restore_last", action="store_true",
help="Whether to not restore last (FC) layers.")
parser.add_argument("--num_classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--power", type=float, default=POWER,
help="Decay parameter to compute the learning rate.")
parser.add_argument("--random_mirror", action="store_true",
help="Whether to randomly mirror the inputs during the training.")
parser.add_argument("--random_scale", action="store_true",
help="Whether to randomly scale the inputs during the training.")
parser.add_argument("--seed", type=int, default=213,
help="Random seed to have reproducible results.")
parser.add_argument("--snapshot_dir", type=str, default='./snapshots',
help="Where to save snapshots of the model.")
parser.add_argument("--weight_decay", type=float, default=WEIGHT_DECAY,
help="Regularisation parameter for L2-loss.")
parser.add_argument("--gpu", type=int, default=0,
help="choose gpu device.")
# for domain randomization (DR in the paper)
parser.add_argument("--do_augm", type=int, default=0,
help="Whether to perform data augmentation.")
parser.add_argument("--augm_set", type=int, default=0,
help="Which data augmentation set to use.")
return parser.parse_args()
args = get_arguments()
args.do_augm = bool(args.do_augm)
if args.do_augm:
raise NotImplementedError(
"Code to perform data augmentation not available yet.")
if not args.do_augm:
args.augm_set = 0
def loss_calc(pred, label, gpu):
"""
This function returns cross entropy loss for semantic segmentation
"""
label = Variable(label.long()).cuda(gpu)
criterion = CrossEntropy2d().cuda(gpu)
return criterion(pred, label)
def lr_poly(base_lr, iter, max_iter, power):
return base_lr * ((1 - float(iter) / max_iter) ** (power))
def adjust_learning_rate(optimizer, i_iter):
lr = lr_poly(args.learning_rate, i_iter, args.num_steps, args.power)
optimizer.param_groups[0]['lr'] = lr
if len(optimizer.param_groups) > 1:
optimizer.param_groups[1]['lr'] = lr * 10
def main():
"""Create the model and start the training."""
npr.seed(args.seed)
w, h = map(int, args.input_size.split(','))
input_size = (w, h)
cudnn.enabled = True
gpu = args.gpu
# Create network
model = Deeplab(num_classes=args.num_classes)
args.restore_from = dict()
args.restore_from['DeeplabMulti'] = 'http://vllab.ucmerced.edu/ytsai/CVPR18/DeepLab_resnet_pretrained_init-f81d91e8.pth'
# --- loading pre-trained weights (on ImageNet + COCO) ------------
print('Loading pre-trained model')
if args.restore_from['DeeplabMulti'].startswith('http'):
saved_state_dict = model_zoo.load_url(args.restore_from['DeeplabMulti'])
else:
saved_state_dict = torch.load(args.restore_from['DeeplabMulti'])
saved_state_dict_original = model.state_dict().copy()
for i in saved_state_dict:
if (('bn' in i) or ('running_mean' in i) or ('running_var' in i)):
continue
# Scale.layer5.conv2d_list.3.weight
i_parts = i.split('.')
if not args.num_classes == 19 or not i_parts[1] == 'layer5':
saved_state_dict_original['.'.join(i_parts[1:])] = saved_state_dict[i]
# loading model
model.load_state_dict(saved_state_dict_original)
model.train()
model.cuda(args.gpu)
cudnn.benchmark = True
summary_dict = {'loss':[], 'iter':[], 'lr':[]}
args.snapshot_dir = f'./snapshots/{args.dataset}/arch_{args.model}_epochs_{args.num_epochs}_bs_{args.batch_size}_is_{args.iter_size}_' + \
f'lr_{args.learning_rate}_mom_{args.momentum}_wd_{args.weight_decay}_opt_{args.optimizer}_' + \
f'augm_{args.do_augm}_set_{args.augm_set}'
print(f'exp = {args.snapshot_dir}')
if not os.path.exists(args.snapshot_dir):
os.makedirs(args.snapshot_dir)
if args.dataset == 'GTA5':
train_set = GTA5(root=args.data_dir, num_epochs=args.num_epochs,
crop_size=input_size, mean=IMG_MEAN)
elif args.dataset.upper() == 'GTA52CITYSCAPES':
train_set = GTA52Cityscapes(root=args.data_dir, num_epochs=args.num_epochs,
crop_size=input_size, mean=IMG_MEAN)
trainloader = data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, pin_memory=True)
trainloader_iter = enumerate(trainloader)
# implement model.optim_parameters(args) to handle different models' lr setting
if args.optimizer == 'SGD':
optimizer = optim.SGD(model.optim_parameters(args),
lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
elif args.optimizer == 'Adam':
optimizer = optim.Adam(model.optim_parameters(args), lr=args.learning_rate)
elif args.optimizer == 'RMSprop':
optimizer = optim.RMSprop(model.optim_parameters(args), lr=args.learning_rate)
else:
raise ValueError('Non-supported optimizer')
optimizer.zero_grad()
interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')
args.num_steps = args.num_epochs * (25000 // (args.batch_size * args.iter_size))
for i_iter in range(args.num_steps):
optimizer.zero_grad()
if args.optimizer == 'SGD':
adjust_learning_rate(optimizer, i_iter)
for sub_i in range(args.iter_size):
try:
_, batch = next(trainloader_iter)
except:
print('End of training.')
print('Saving model.')
torch.save(model.state_dict(), osp.join(args.snapshot_dir, 'GTA.pth'))
with open(osp.join(args.snapshot_dir, 'summary.pkl'),'wb') as f:
pickle.dump(summary_dict, f, pickle.HIGHEST_PROTOCOL)
exit()
images, labels, _, _ = batch
images = Variable(images).cuda(args.gpu)
pred = model(images)
pred = interp(pred)
loss = loss_calc(pred, labels, args.gpu)
# proper normalization
loss = loss / args.iter_size
loss.backward()
optimizer.step()
if i_iter%50==0:
lr_ = optimizer.param_groups[0]['lr']
print(f'iter = {i_iter:8d}/{args.num_steps:8d}, loss = {loss:.3f}, lr = {lr_:.5f}')
summary_dict['iter'].append(i_iter)
summary_dict['lr'].append(lr_)
summary_dict['loss'].append(loss.detach().cpu().numpy())
if (i_iter % 10000) == 0:
print('Saving model.')
torch.save(model.state_dict(), osp.join(args.snapshot_dir, 'GTA.pth'))
with open(osp.join(args.snapshot_dir, 'summary.pkl'),'wb') as f:
pickle.dump(summary_dict, f, pickle.HIGHEST_PROTOCOL)
if (i_iter % 25000) == 0:
print('Backing up model.')
torch.save(model.state_dict(), osp.join(args.snapshot_dir, f'GTA_{i_iter}.pth'))
if __name__ == '__main__':
main()