-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGME_functions.R
193 lines (149 loc) · 5.58 KB
/
GME_functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
##### GME_Movement Functions #####
# Nathan Hahn
##### rollstat #####
# function to return stats from roll apply.
# Used inside window_stats
rollstat <- function(x, nas = TRUE) {
# x = numeric vector
# na.rm = boolean, whether or not to remove NA's
m <- mean(x, na.rm = nas)
s <- sd(x, na.rm = nas)
hi <- m + 2*s
lo <- m - 2*s
ag.window <- max(x) # all points within the window will be labeled 1 - signals a "raiding period" for activity budgets/plotting
ret <- c(mean = m, stdev = s, hi.95 = hi, lo.95 = lo, ag.window = ag.window)
return(ret)
}
##### window_stats #####
# Get rollstats for a list of individuals. Supply list of individuals and windows(s) to apply
window_stats <- function(df.list, window, align = "center"){
require(zoo)
require(xts)
system.time({
# Calculate moving window stats
ts <- lapply(df.list, as.ts, start = df.list[[i]]$date, frequency = 1) # frequency set with 1hr fixes
tx <- lapply(ts, as.xts)
res <- lapply(seq_along(tx), function(i) rollapply(tx[[i]]$ag.used, width = window, align = align,
by.column = FALSE, FUN = rollstat))
res <- lapply(res, as.data.frame) # converting inline with Map() doesn't work
# merge outputs into data frame for each individual
merge <- Map(cbind, df.list, res)
output <- do.call("rbind", merge)
return(output)
})
}
##### staging stats #####
r_stat <- function(x, nas = TRUE) {
# x = numeric vector
# na.rm = boolean, whether or not to remove NA's
m <- mean(x, na.rm = nas)
s <- sd(x, na.rm = nas)
hi <- m + 2*s
lo <- m - 2*s
window <- max(x) # all points within the window will be labeled 1 - signals a "raiding period" for activity budgets/plotting
ret <- c(mean = m, stdev = s, hi.95 = hi, lo.95 = lo, window = window)
return(ret)
}
# Get rollstats for a list of individuals. Supply list of individuals and windows(s) to apply
stage_stats <- function(df.list, window, col, align = "center"){
require(zoo)
require(xts)
system.time({
# Calculate moving window stats
ts <- lapply(df.list, as.ts, start = df.list[[i]]$date, frequency = 1) # frequency set with 1hr fixes
tx <- lapply(ts, as.xts)
res <- lapply(seq_along(tx), function(i) rollapply(tx[[i]][,col], width = window, align = align,
by.column = FALSE, FUN = r_stat))
res <- lapply(res, as.data.frame) # converting inline with Map() doesn't work
# merge outputs into data frame for each individual
merge <- Map(cbind, df.list, res)
output <- do.call("rbind", merge)
return(output)
})
}
##### plot_budget #####
# function for plotting activity budgets
plot_budget <- function(t=t, facet, title){
require(tidyverse)
require(lubridate)
ggplot(t, aes(hour(date))) +
facet_grid(facet) +
geom_density(aes(x = hour(date),
fill = factor(viterbi), colour = factor(viterbi)), alpha = 0.3, adjust = 1.5) +
# add day/night lines - code for shading below
geom_vline(aes(xintercept=6),
color="dark grey", linetype="dashed", size=1) +
geom_vline(aes(xintercept=18),
color="dark grey", linetype="dashed", size=1) +
# add colors
scale_fill_manual(values = c("#E69F00", "#56B4E9", "#009E73"), name = c("state")) +
scale_colour_manual(values = c("#E69F00", "#56B4E9", "#009E73"), name = c("state")) +
xlab("hour (0-23)") + ggtitle(title)
}
##### velocity #####
velocity <- function(df, dateTime) {
require(rlist)
# calculate time differences
tdiff <- diff(dateTime)
units(tdiff) <- "hours"
tdiff <- as.numeric(tdiff)
tdiff <- list.append(tdiff, 0) # add speed zero for last fix
# step lengths
step <- df$step
# calculate velocity at each time step
speed <- as.vector(step/tdiff)
# attach to the data.frame
df$step <- speed
return(df)
}
##### log.velocity #####
log_velocity <- function(df) {
require(rlist)
# calculate time differences
tdiff <- diff(df$date)
units(tdiff) <- "hours"
tdiff <- as.numeric(tdiff)
tdiff <- list.append(tdiff, 0) # add speed zero for last fix
# step lengths
step <- df$step
# calculate velocity at each time step
speed <- as.vector(step/tdiff)
# attach to the data.frame
df$step <- log(speed + 0.001) # add constant for zero steps
return(df)
}
##### mask.poly.raster #####
mask_poly_raster <- function(poly, raster) {
# crop raster to polygon extent
cr <- crop(raster, extent(poly), snap = "out")
# mask the raster by mcp
lr <- mask(x = cr, mask = poly)
return(lr)
}
##### withold #####
# withold data
withold <- function(x, cut, type) {
n <- nrow(x)*cut
if (type == "train") {
y <- head(x, (nrow(x)-n))
}
if (type == "test") {
y <- tail(x, n)
}
return(y)
}
##### cluster cutpoints #####
#To extract the cutoff between any two clusters from an mclust object
cluster_cutpoint<-function(object, comp, grph=T) {
mu1<-object$parameters$mean[comp[1]]
mu2<-object$parameters$mean[comp[2]]
sd1<-sqrt(object$parameters$variance$sigmasq[comp[1]])
sd2<-sqrt(object$parameters$variance$sigmasq[comp[2]])
if(length(object$parameters$variance$sigmasq)>1) {sd2<-sqrt(object$parameters$variance$sigmasq[comp[2]])}
ss<-seq(0,.5, 0.001)
cut<-ss[max(which(pnorm(ss, mu1, sd1, lower.tail=F)>pnorm(ss, mu2, sd2)))]
if (grph) {plot(ss, pnorm(ss, mu1, sd1, lower.tail=F),col="red", type="l", xlab="Mean Ag Use", ylab="Probability", main="Prob of being in cluster")
lines(ss, pnorm(ss, mu2, sd2), col="blue")
abline(v=cut, lwd=2, lty=2)}
return(cut)
}