-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmyDataset.py
266 lines (212 loc) · 9.31 KB
/
myDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import torch.utils.data as data
import torch
from PIL import Image
import os
import os.path
import numpy as np
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.sampler import Sampler, RandomSampler, SequentialSampler
import torch
import itertools
import random
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG', '.TIF',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
# Note that, the sort() can change the label index
# using sort(): {'recaptured': 0, 'nature': 1}
# using sort(key=len): {'RI': 0, 'NI': 1}锛宬ey=len means according to the length of characters
def find_classes(dir):
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))] # output: classes=['CG', 'PG']
classes.sort(key=len)
# output {'RI': 0, 'NI': 1}
class_to_idx = {classes[i]: i for i in range(len(classes))}
#print(classes) # ['RI', 'NI']
#print(class_to_idx) # {'RI': 0, 'NI': 1}
return classes, class_to_idx
def make_dataset(dir, class_to_idx):
images = []
num_in_class = [] # the number of samples in each class
images_txt = []
dir = os.path.expanduser(dir) # change '~ 'and '~user' into 'HOME/your_name'
for target in sorted(os.listdir(dir), key=len):
d = os.path.join(dir, target)
if not os.path.isdir(d):
continue
for root, _, fnames in sorted(os.walk(d)):
num = 0
for fname in sorted(fnames):
if is_image_file(fname):
path = os.path.join(root, fname)
item = (path, class_to_idx[target])
images.append(item) # output: ('XXX.png',1)
images_txt.append(target + '/' + fname) # such as RI/xxx.png
num += 1
num_in_class.append(num)
return images, num_in_class, images_txt
def pil_loader(path, mode='RGB'): # # open path as file to avoid ResourceWarning
with open(path, 'rb') as f:
img = Image.open(f)
if mode == 'L':
return img.convert('L') # convert image to grey
elif mode == 'RGB':
return img.convert('RGB') # convert image to rgb image
elif mode == 'HSV':
return img.convert('HSV')
# elif mode == 'LAB':
# return RGB2Lab(img)
def accimage_loader(path):
# accimage is a partial replacement for PIL.Image (only RGB JPEG images,
# and only a subset of image transformations used in torch.vision) on top of JPEG-Turbo and Intel IPP.
import accimage
try:
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def default_loader(path, mode):
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader(path)
else:
return pil_loader(path, mode)
class MyDataset(data.Dataset):
def __init__(self, root, transform=None, target_transform=None, loader=default_loader):
classes, class_to_idx = find_classes(root)
imgs, num_in_class, images_txt = make_dataset(root, class_to_idx)
if len(imgs) == 0:
raise (RuntimeError("Found 0 images in subfolders of: " + root + "\n"
"Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
# self.mode = args.img_mode
# self.input_nc = args.input_nc
self.imgs = imgs
self.num_in_class = num_in_class
self.images_txt = images_txt
self.classes = classes
self.class_to_idx = class_to_idx
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
path, target = self.imgs[index]
img = self.loader(path, 'RGB')
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.imgs)
class RandomBalancedSampler(Sampler):
"""
Samples elements randomly, with an arbitrary size, independant from dataset length.
This is a balanced sampling that will sample the whole dataset with a random permutation.
"""
def __init__(self, data_source):
print('Using RandomBalancedSampler...')
self.data_source = data_source
self.num_in_class = data_source.num_in_class
def __iter__(self):
num_in_class = self.num_in_class
a_perm = torch.randperm(num_in_class[0]).tolist()
b_perm = [x + num_in_class[0] for x in torch.randperm(num_in_class[1]).tolist()]
if num_in_class[0] > num_in_class[1]:
a_perm = a_perm[0:num_in_class[1]]
elif num_in_class[0] < num_in_class[1]:
b_perm = b_perm[0:num_in_class[0]]
assert len(a_perm) == len(b_perm)
imgdata=[]
for i in range(len(a_perm)):
imgdata.append(a_perm[i])
imgdata.append(b_perm[i])
#return iter(next(it) for it in itertools.cycle([iter(a_perm), iter(b_perm)]))
return iter(imgdata)
def __len__(self):
return min(self.num_in_class) * 2
# each two element is paired, and order is shuffled for each epoch (shuffle=True)
# the number of samples in two class is same
class PairedSampler(Sampler):
def __init__(self, data_source):
print('Using PairedSampler...')
self.data_source = data_source
self.num_in_class = data_source.num_in_class
def __iter__(self):
num_in_class = self.num_in_class
a_perm = torch.randperm(num_in_class[0]).tolist()
b_perm = [x + num_in_class[0] for x in a_perm]
return iter(next(it) for it in itertools.cycle([iter(a_perm), iter(b_perm)]))
def __len__(self):
return min(self.num_in_class) * 2
# each two element is paired
# the number of samples in two class is same
class SequentialPairedSampler(Sampler):
def __init__(self, data_source):
print('Using SequentialPairedSampler...')
self.data_source = data_source
self.num_in_class = data_source.num_in_class
def __iter__(self):
num_in_class = self.num_in_class
a_perm = range(num_in_class[0])
b_perm = [x + num_in_class[0] for x in a_perm]
return iter(next(it) for it in itertools.cycle([iter(a_perm), iter(b_perm)]))
def __len__(self):
return min(self.num_in_class) * 2
# each two element is paired
# the number of samples is times of that of other class
class PairedBalancedSampler(Sampler):
def __init__(self, data_source):
print('Using PairedBalancedSampler...')
self.data_source = data_source
self.num_in_class = data_source.num_in_class
def __iter__(self):
num_in_class = self.num_in_class
if num_in_class[0] > num_in_class[1]:
pn_num = num_in_class[0] / num_in_class[1]
classA_index = np.arange(num_in_class[0]).reshape(num_in_class[1], -1)
rad = np.random.rand(classA_index.shape[0], classA_index.shape[1])
column_index = np.argmax(rad, axis=1)
tmp_perm = torch.randperm(num_in_class[1])
a_perm = list(classA_index[np.array(tmp_perm.tolist()), column_index])
b_perm = [x + num_in_class[0] for x in tmp_perm]
elif num_in_class[0] < num_in_class[1]:
pn_num = num_in_class[1] / num_in_class[0]
classB_index = np.arange(num_in_class[1]).reshape(num_in_class[0], -1)
rad = np.random.rand(classB_index.shape[0], classB_index.shape[1])
column_index = np.argmax(rad, axis=1)
a_perm = torch.randperm(num_in_class[0])
tmp_perm = list(classB_index[np.array(a_perm.tolist()), column_index])
b_perm = [x + num_in_class[0] for x in tmp_perm]
assert len(a_perm) == len(b_perm)
return iter(next(it) for it in itertools.cycle([iter(a_perm), iter(b_perm)]))
def __len__(self):
return min(self.num_in_class) * 2
class DataLoaderHalf(DataLoader):
def __init__(self, dataset,
shuffle=False, batch_size=1, half_constraint=False, sampler_type='RandomBalancedSampler',
drop_last=True, num_workers=0, pin_memory=False):
if half_constraint:
if sampler_type == 'PairedSampler' or sampler_type == 'SequentialPairedSampler':
if shuffle:
sampler = PairedSampler(dataset)
else:
sampler = SequentialPairedSampler(dataset)
elif sampler_type == 'PairedBalancedSampler':
sampler = PairedBalancedSampler(dataset)
else:
sampler = RandomBalancedSampler(dataset)
else:
if shuffle:
sampler = RandomSampler(dataset)
else:
sampler = SequentialSampler(dataset)
super(DataLoaderHalf, self). \
__init__(dataset, batch_size, None, sampler,
None, num_workers, pin_memory=pin_memory, drop_last=drop_last)