|
| 1 | +library(shiny) |
| 2 | +library(plyr) |
| 3 | +library(dplyr) |
| 4 | +library(data.table) |
| 5 | +library(tictoc) |
| 6 | +library(randomForest) |
| 7 | +library(stringr) |
| 8 | +library(htmlwidgets) |
| 9 | +library(XLConnect) |
| 10 | +library(DT) |
| 11 | +library(dichromat) |
| 12 | +source("scripts/utilities.R") |
| 13 | + |
| 14 | +ui <- fluidPage( |
| 15 | + sidebarLayout( |
| 16 | + sidebarPanel( |
| 17 | + fileInput("file1", "Choose File (.csv, .txt, .rds):", |
| 18 | + accept = c( |
| 19 | + "text/csv/RDS/rds", |
| 20 | + "text/comma-Semicolon-values,text/plain", |
| 21 | + ".csv", ".txt", ".rds", ".RDS") |
| 22 | + ), |
| 23 | + h5(strong("\n Welcome to the clusterization App")), |
| 24 | + uiOutput("varsToCluster"), |
| 25 | + uiOutput("varsToShow"), |
| 26 | + uiOutput("varScore"), |
| 27 | + h5(strong("\n Please select the number of clusters and the sample proportion in number or percentile")), |
| 28 | + splitLayout(cellWidths = c("25%", "30%", "5%", "30%"), |
| 29 | + numericInput(inputId = "numClusters", |
| 30 | + label = "Num Clusters", |
| 31 | + value = 3, |
| 32 | + min = 0, |
| 33 | + max = 100, |
| 34 | + step = 1, |
| 35 | + width = '50%'), |
| 36 | + uiOutput("numCustomers"), |
| 37 | + h4("\n "), |
| 38 | + numericInput(inputId = "percCustomers", |
| 39 | + label = "% Customers", |
| 40 | + value = NULL, |
| 41 | + min = 0, |
| 42 | + max = 100, |
| 43 | + step = 0.0001, |
| 44 | + width = '50%')), |
| 45 | + checkboxInput(inputId ="scaleData", |
| 46 | + label = "Do you want to scale the data?", value = TRUE, width = NULL), |
| 47 | + actionButton("clusterTime", "Launch Clustering"), |
| 48 | + h4(strong("\n Please select the files you want to save:")), |
| 49 | + splitLayout(cellWidths = c("50%","25%", "25%"), |
| 50 | + h5(strong("\n Top riskiest with cluster")), |
| 51 | + radioButtons("filetype1", NULL, |
| 52 | + choices = c(".csv", ".rds"), inline = TRUE), |
| 53 | + downloadButton("downloadClusters", "Download")), |
| 54 | + splitLayout(cellWidths = c("50%","25%", "25%"), |
| 55 | + h5(strong("\n Clusterization summary")), |
| 56 | + h4("\n "), |
| 57 | + downloadButton("downloadSummary", "Download")) |
| 58 | + |
| 59 | + ), |
| 60 | + mainPanel( |
| 61 | + DT::dataTableOutput("DT_deepDiveDynamicClusterTable") |
| 62 | + ) |
| 63 | + ) |
| 64 | +) |
| 65 | + |
| 66 | + |
| 67 | +server <- function(input, output, session){ |
| 68 | + options(shiny.maxRequestSize = 6000*1024^2) |
| 69 | + |
| 70 | + globalVars <- eventReactive( {input$file1} , { |
| 71 | + inFile <- input$file1 |
| 72 | + if (is.null(inFile)) |
| 73 | + return(NULL) |
| 74 | + |
| 75 | + |
| 76 | + if(grepl(".rds$|.RDS$", inFile$name)){ |
| 77 | + dt <- readRDS(inFile$datapath) |
| 78 | + } else { |
| 79 | + dt <- fread(inFile$datapath) |
| 80 | + #, header = input$header, sep = input$sep) |
| 81 | + } |
| 82 | + varsInTable <- unique(names(dt)) |
| 83 | + nrows <- as.numeric(nrow(dt)) |
| 84 | + |
| 85 | + list( dt = dt, varsInTable = varsInTable, nrows = nrows) |
| 86 | + |
| 87 | + }) |
| 88 | + output$varsToCluster <- renderUI({ |
| 89 | + selectizeInput(inputId = "selectVarToCluster", label = "Select variables to be used for clusterization", |
| 90 | + choices = globalVars()$varsInTable, selected = NULL, multiple = TRUE, |
| 91 | + options = NULL, width = "80%") |
| 92 | + |
| 93 | + }) |
| 94 | + output$varsToShow <- renderUI({ |
| 95 | + selectizeInput(inputId = "selectVarToShow", label = "Select variables to be shown in the clustering summary", |
| 96 | + choices = globalVars()$varsInTable, selected = NULL, multiple = TRUE, |
| 97 | + options = NULL, width = "80%") |
| 98 | + }) |
| 99 | + |
| 100 | + output$varScore <- renderUI({ |
| 101 | + selectInput(inputId = "score", |
| 102 | + label = "Select the variable containing the score", |
| 103 | + choices = globalVars()$varsInTable, |
| 104 | + selected = NULL, multiple = FALSE, |
| 105 | + selectize = FALSE, width = "80%", size = NULL) |
| 106 | + |
| 107 | + }) |
| 108 | + |
| 109 | + output$numCustomers <- renderUI({ |
| 110 | + numericInput(inputId = "numCustomers", |
| 111 | + label = "N Customers", |
| 112 | + value = globalVars()$nrows, |
| 113 | + min = 0, |
| 114 | + max = globalVars()$nrows, |
| 115 | + step = 1, |
| 116 | + width = '70%') |
| 117 | + |
| 118 | + }) |
| 119 | + |
| 120 | + observeEvent(input$numCustomers, { |
| 121 | + #req(input$numCustomers) |
| 122 | + if(is.na(input$numCustomers)){ |
| 123 | + updateNumericInput(session, "percCustomers", value = 0) |
| 124 | + } else { |
| 125 | + x <- round(input$numCustomers / globalVars()$nrows, 4) * 100 |
| 126 | + if (x > 100){ |
| 127 | + updateNumericInput(session, "percCustomers", value = 100) |
| 128 | + } else { |
| 129 | + updateNumericInput(session, "percCustomers", value = x) |
| 130 | + } |
| 131 | + } |
| 132 | + |
| 133 | + }) |
| 134 | + |
| 135 | + observeEvent(input$percCustomers, { |
| 136 | + #req(input$percCustomers) |
| 137 | + if(is.na(input$percCustomers)){ |
| 138 | + updateNumericInput(session, "numCustomers", value = 0 ) |
| 139 | + } else { |
| 140 | + y <- round(input$percCustomers / 100 * globalVars()$nrows) |
| 141 | + if (y > globalVars()$nrows){ |
| 142 | + updateNumericInput(session, "numCustomers", value = globalVars()$nrows ) |
| 143 | + } else { |
| 144 | + updateNumericInput(session, "numCustomers", value = y ) |
| 145 | + } |
| 146 | + } |
| 147 | + }) |
| 148 | + clusterizationData <- eventReactive(input$clusterTime, { |
| 149 | + print(getwd()) |
| 150 | + print(file.exists("auxFiles/clusteringTemplate.xlsx")) |
| 151 | + clusters <- kMeansClustering(dt = globalVars()$dt, |
| 152 | + clusteringVarnames = input$selectVarToCluster, |
| 153 | + shownVarnames = input$selectVarToShow, |
| 154 | + nClusters = input$numClusters, |
| 155 | + scoreColName = input$score, |
| 156 | + nRowsToCluster = input$numCustomers, |
| 157 | + percRowsToCluster = NULL, |
| 158 | + scaleData = input$scaleData, |
| 159 | + file = NULL, |
| 160 | + template = "auxFiles/clusteringTemplate.xlsx", |
| 161 | + plotFilename = NULL, |
| 162 | + plotSampleSize = 500, |
| 163 | + verbose = TRUE) |
| 164 | + print(input$score) |
| 165 | + |
| 166 | + clustersSummary <- clusters$report |
| 167 | + clustersSummary[, (setdiff(names(clustersSummary),c("usedForClustering", "cluster"))) := lapply(.SD, function(x){round(x, 3)}), .SDcols = (setdiff(names(clustersSummary),c("usedForClustering", "cluster")))] |
| 168 | + clusters <- clusters$clusteredData |
| 169 | + list(clustersSummary = clustersSummary, clusters = clusters) |
| 170 | + }) |
| 171 | + |
| 172 | + output$DT_deepDiveDynamicClusterTable <- DT::renderDataTable({ |
| 173 | + |
| 174 | + n_months <- (clusterizationData()$clustersSummary %>% ncol) - 2 |
| 175 | + print(n_months) |
| 176 | + palettes <- gsub(', ', '", "', paste(colorRampPalette(c("#F8696B","#FFEB84","#63BE7B"))(n_months), collapse=", ")) |
| 177 | + print(palettes) |
| 178 | + palettes <- sprintf('"%s"',palettes) |
| 179 | + |
| 180 | + return(DT::datatable( |
| 181 | + clusterizationData()$clustersSummary, |
| 182 | + rownames = TRUE, |
| 183 | + extensions = 'FixedColumns', |
| 184 | + options = list( |
| 185 | + scrollX = TRUE, |
| 186 | + fixedColumns = list(leftColumns = 1, rightColumns=0), |
| 187 | + lengthMenu = list(c(5, 15, -1), c('5', '15', 'All')), |
| 188 | + pageLength = -1, |
| 189 | + rowCallback = JS(sprintf(' |
| 190 | + function(nRow, aData, iDisplayIndex, iDisplayIndexFull) { |
| 191 | + // Bold and green cells for conditions |
| 192 | + var defColors= [ %s ]; |
| 193 | + console.log(aData.length); |
| 194 | + var valData=[]; |
| 195 | + for (var i = 0; i < aData.length -3; i++) { |
| 196 | + valData.push(parseFloat(aData[i+2])); |
| 197 | + }; |
| 198 | + valData.sort(function(a,b){return a - b}); |
| 199 | + |
| 200 | + console.log("aData", aData); |
| 201 | + console.log("valData", valData); |
| 202 | + |
| 203 | + for (var i = 1; i < aData.length; i++) { |
| 204 | + var targetCell = "td:eq(" + i + ")"; |
| 205 | + //var colCell = defColors[i]; |
| 206 | + var colCell = defColors[valData.indexOf(parseFloat(aData[i]))]; |
| 207 | + console.log("Test",i, targetCell, aData[i], valData.indexOf(parseFloat(aData[i])), colCell); |
| 208 | + //console.log(valData.indexOf(parseFloat(aData[i]))); |
| 209 | + //console.log(colCell); |
| 210 | + $(targetCell, nRow).css("background-color", colCell); |
| 211 | + } |
| 212 | + }', palettes))))) |
| 213 | + |
| 214 | +}) |
| 215 | + |
| 216 | + output$downloadClusters <- downloadHandler( |
| 217 | + # This function returns a string which tells the client |
| 218 | + # browser what name to use when saving the file. |
| 219 | + filename = function(){ |
| 220 | + paste0("clusterization_output", input$filetype1) |
| 221 | + }, |
| 222 | + # This function should write data to a file given to it by |
| 223 | + # the argument 'file' |
| 224 | + content = function(file){ |
| 225 | + fileType <- switch(input$filetype1, ".csv" = ".csv", ".rds" = ".rds") |
| 226 | + if (fileType == ".rds"){ |
| 227 | + saveRDS(clusterizationData()$clusters, file) |
| 228 | + } else { |
| 229 | + fwrite(clusterizationData()$clusters, file, sep = ";") |
| 230 | + } |
| 231 | + } |
| 232 | + ) |
| 233 | + |
| 234 | + output$downloadSummary <- downloadHandler( |
| 235 | + # This function returns a string which tells the client |
| 236 | + # browser what name to use when saving the file. |
| 237 | + filename = function(){ |
| 238 | + paste0("clusterization_summary", ".xlsx") |
| 239 | + }, |
| 240 | + # This function should write data to a file given to it by |
| 241 | + # the argument 'file' |
| 242 | + content = function(file){ |
| 243 | + clustersSummary <- clusterizationData()$clustersSummary |
| 244 | + str(file) |
| 245 | + saveClustersSummary(clustersSummary = clustersSummary, |
| 246 | + file = file, |
| 247 | + template = "auxFiles/clusteringTemplate.xlsx") |
| 248 | + |
| 249 | + }) |
| 250 | + } |
| 251 | + |
| 252 | +options(shiny.port = 5556, |
| 253 | + # shiny.host = "172.20.35.58", |
| 254 | + shiny.launch.browser = T, shiny.trace = T) |
| 255 | +shinyApp(ui, server) |
0 commit comments