-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscript_x_archive.r
313 lines (285 loc) · 9.95 KB
/
script_x_archive.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Previously used for construction of corpus.
# [Optional]
# Remove characters and restore plain text document structure.
# Else the error: 'Fehler: inherits(doc, "TextDocument") ist nicht TRUE'
# is returned.
# unicodeCharacters <- c("\u0093", "\u0094", "\u0095", "\u0096", "\u0097")
# crp <- tm_map(crp, removeUnicodeCharacters, unicodeCharacters)
# crp <- tm_map(crp, PlainTextDocument)
# Define custom function to remove additional unicode characters.
# For some reason, does not return a value of class 'TextDocument',
# therefore the 'PlainTextDocument' conversion below is required.
removeUnicodeCharacters <- function(x, characters)
{
gsub(sprintf("%s", paste(characters, collapse="|")), "", x, perl=TRUE)
}
# Previously used in preprocessing.
# Solved by using "ASCII" encoding.
# Define custom function to remove additional unicode characters.
# For some reason, does not return a value of class 'TextDocument',
# therefore the 'PlainTextDocument' conversion below is required.
removeUnicodeCharacters <- function(x, characters)
{
gsub(sprintf("%s", paste(characters, collapse="|")), "", x, perl=TRUE)
}
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# OLD 'script_prediction.r'
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# Remove after 'script_modeling' was sourced:
# - crp
# - tdm[uni|di|tri]
# - tdm[uni|di|tr]df
# - tdm[uni|di|tr]m
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# Zipf law file export
# ------------------------------------------------------------------
# zipf_law <- file("zipf_law.dat")
# writeLines(tdmunidt$p, zipf_law)
# close(zipf_law)
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# Remove previously used objects.
# ------------------------------------------------------------------
rm(list=c("crp", "tdmuni", "tdmdi", "tdmtri",
"tdmunidf", "tdmdidf", "tdmtridf",
"tdmunim", "tdmdim", "tdmtrim"))
gc()
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# Input 01 -> tokenize to uni01, di01, tri01
# ------------------------------------------------------------------
# Tokenize input to 1-gram.
uni01 <- TermDocumentMatrix(Corpus(VectorSource(input01)),
control=list(tokenize=UniGramTokenizer))
uni01 <- as.matrix(uni01)
colnames(uni01) <- c("counts")
uni01 <- as.data.frame(uni01)
uni01 <- as.data.table(uni01, keep.rownames=T)
# Tokenize input to 2-grams.
# di01 <- TermDocumentMatrix(Corpus(VectorSource(input01)),
# control=list(tokenize=DiGramTokenizer))
# di01 <- as.matrix(di01)
# colnames(di01) <- c("counts")
# di01 <- as.data.frame(di01)
# di01 <- as.data.table(di01, keep.rownames=T)
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# Find input 1-grams in rownames of 2-gram term-document matrix.
for_loop_length <- nrow(uni01)
for(i in 1:for_loop_length)
{
# Matches
mtdi <- grep(uni01$rn[i], tdmdidt$rn)
mttri <- grep(uni01$rn[i], tdmtri$rn)
}
# Reduced data table of filtered expressions
tdmdidtred <- tdmdidt[mtdi]
tdmtridtred <- tdmtridt[mttri]
# Order by decreasing probability.
tdmdidtred[order(tdmdidtred$p, decreasing=T)]
tdmtridtred[order(tdmtridtred$p, decreasing=T)]
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# Prediction utilities.
# ..................................................................
# build_model(n-gram)
# -> return a list of (n+1)-grams where the (n+1)-token follows
# the n-gram
#
# For the top x 1-grams with 'p' > 0.01: get the 2-grams
# containing the 1-gram.
uni <- tdmunidt[tdmunidt$p > 0.01]
for(i in uni){tdmdidt[grep(sprintf("^%s ", i), tdmdidt$rn)]}
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# input01 <- paste("The guy in front of me", "just bought a pound of",
# "bacon, a bouquet, and a case of", collapse= " ")
#
# input02 <- paste("You're the reason why I smile everyday.",
# "Can you follow me please?", "It would mean the", collapse=" ")
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# .................................................................
# Input:
# - 0 space
# >0 characters
# 0 space
#
# - >0 space
# >0 characters
# 0 space
#
# - 0 space
# >0 characters
# >0 space
#
# - >0 space
# >0 characters
# >0 space
#
# Remove all beginning/ending spaces.
grep_pattern <- trim_all(input$userInput)
grep_pattern_length <- get_pattern_length(grep_pattern)
# One word input.
if(grep_pattern_length == 1)
{
data_found <- get_data(grep_pattern, dtq_ml_wv)
if(data_found_is_zero(data_found))
{
data_found <- rbind(data_found, get_data(grep_pattern, dtq_ml_wuv))
}
if(data_found_is_zero(data_found))
{
data_found <- get_top_unigrams(dtq_ml_w)
}
}
# .................................................................
# .................................................................
# Input:
# - 0 space
# >0 characters
# 1 space
# >0 characters
# 0 space
#
# - >0 space
# >0 characters
# 1 space
# >0 characters
# 0 space
#
# - 0 space
# >0 characters
# >1 space
# >0 characters
# 0 space
#
# - 0 space
# >0 characters
# 1 space
# >0 characters
# >0 space
#
# - >0 space
# >0 characters
# >1 space
# >0 characters
# >0 space
#
#if(grep_pattern_length == 2)
#{
# data_found <- get_data(grep_pattern, dtq_ml_wuv)
# if(data_found_is_zero(data_found))
# {
# grep_pattern <- last_word(grep_pattern)
# data_found <- rbind(data_found, get_data(grep_pattern, dtq_ml_wuv))
# }
# if(data_found_is_zero(data_found))
# {
# data_found <- rbind(data_found, get_data(grep_pattern, dtq_ml_wuv))
#
# if(data_found_is_zero(data_found))
# {
# data_found <- get_top_unigrams(dtq_ml_w)
# }
#}
# .................................................................
if(get_pattern_length(gp) == 1)
{
data_found <- get_data(gp, dtq_ml_wv)
if(data_is_found(data_found))
{
get_top_finding(data_found)
}
}
if(get_pattern_length(gp) == 2)
{
data_found <- get_data(gp, dtq_ml_wuv)
if(data_is_found(data_found))
{
get_top_finding(data_found)
}
if(data_found_is_zero(data_found))
{
gp_tmp <- remove_first_term(gp)
data_found <- get_data(gp_tmp, dtq_ml_wv)
}
}
if(get_pattern_length(gp) == 3)
{
data_found <- get_data(gp, dtq_ml_wuvx)
if(data_is_found(data_found))
{
get_top_finding(data_found)
}
if(data_found_is_zero(data_found))
{
gp_tmp <- remove_first_term(gp)
data_found <- get_data(gp_tmp, dtq_ml_wuv)
if(data_is_found(data_found))
{
data_found
}
}
}
if(get_pattern_length(gp) == 4)
{
data_found <- get_data(gp, dtq_ml_wuvxy)
if(data_is_found(data_found))
{
get_top_finding(data_found)
}
}
if gp < 5
{
if gp = 1
w_in_wv(w, wv)
if found
v
if not found
w_random()
if gp = 2
wv_in_wuv(wv, wuv)
if found
u
if not found
v <- remove_first(wv)
w_in_wv(v, wv)
if gp = 3
wuv_in_wuvx(wuv, wuvx)
if found
u
if not found
uv <- remove_first(wuv)
wv_in_wuv(uv, wuv)
if gp = 4
wuvx_in_wuvxy(wuvx, wuvxy)
if found
u
if not found
uvx <- remove_first(wuvx)
wuv_in_wuvx(uvx, wuvx)
}
if(is_found(data_found))
{
data_found
}
if(is_zero(data_found))
{
gp <- remove_first_term(gp)
data_found <- get_data(gp, dtq_ml_wuvx)
if(is_zero(data_found))
{
gp <- remove_first_term(gp)
data_found <- get_data(gp, dtq_ml_wuv)
if(is_zero(data_found))
{
gp <- remove_first_term(gp)
data_found <- get_data(gp, dtq_ml_wv)
}
}
}