-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_clean_data.py
185 lines (136 loc) · 5.62 KB
/
train_clean_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# This file trains a segmentation network on clean data (i.e. without clouds and occlusions)
# Remember to set cfg.data.name = 'berlin4x4' in config.py
import torch
import matplotlib.pyplot as plt
from config import cfg
from data_factory import get_dataset
import numpy as np
from datetime import datetime
import os
from My_Unet import Net_lighter as Unet_class # lighter U-Net qaurter the channels
from metrics import IoU
def main():
# setting output directory
out_dir = cfg.train.out_dir
if not os.path.exists(out_dir):
os.makedirs(out_dir)
else:
print('Folder already exists. Are you sure you want to overwrite results?')
print('Debug') # put a break point here
print('Configuration:')
print(cfg)
## Data loaders
cfg.train.mode = 'train' # Training data loader
ds_train = get_dataset( cfg.train.mode)
cfg.train.mode = 'test' # validation data loader
ds_test = get_dataset(cfg.train.mode)
print('Data loaders have been prepared!')
## Model
cfg.train.mode = 'train'
net = Unet_class()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
print('Network loaded. Starting training...')
# weights for # building, road, BG
my_weight = torch.from_numpy(np.asarray([1, 2, 0.5])).type('torch.cuda.FloatTensor')
criterion = torch.nn.CrossEntropyLoss(weight=my_weight )
optim = torch.optim.Adam(net.parameters(), lr=cfg.train.learning_rate, weight_decay=cfg.train.learning_rate_decay)
# learning rate scheduler
scheduler = torch.optim.lr_scheduler.StepLR(optim, step_size=5, gamma=0.5)
ep = cfg.train.num_epochs # number of epochs
# loss logs
loss_train = 9999.0*np.ones(ep)
temp_train_loss = 0
loss_val = 9999.0*np.ones(ep)
# training the network
for epoch in range(ep):
running_loss = 0.0
running_ctr = 0
# switch model to training mode, clear gradient accumulators
net.train()
optim.zero_grad()
scheduler.step() # update learning rate
t1 = datetime.now()
for i, data in enumerate(ds_train, 0):
optim.zero_grad()
# reading images
images = data[0].type('torch.cuda.FloatTensor')
# labels
labels = data[1].type('torch.cuda.LongTensor')
predicted = net(images)
loss = criterion(predicted, labels)
loss.backward()
optim.step()
# print statistics
running_loss += loss.item()
running_ctr += 1
if i %25 ==0:
t2 = datetime.now()
delta = t2 - t1
t_print = delta.total_seconds()
temp_train_loss = running_loss/25.0
print('[%d, %5d out of %5d] loss: %f, time = %f' %
(epoch + 1, i + 1, len(ds_train) , running_loss / running_ctr, t_print ))
iou_build, iou_road, iou_bg = IoU(predicted, labels)
print('building IoU = ' + str(iou_build) + ', road IoU = ' + str(iou_road) + ', background IoU = ' + str(iou_bg) )
running_loss = 0.0
running_ctr = 0
t1 = t2
net.eval()
val_loss = 0
with torch.no_grad():
for i, data in enumerate(ds_test, 0):
# reading images
images = data[0].type('torch.cuda.FloatTensor')
# labels
labels = data[1].type('torch.cuda.LongTensor')
predicted = net(images)
loss = criterion(predicted, labels)
# Val loss
val_loss += loss.item()
# print statistics
val_loss = val_loss /len(ds_test)
print('End of epoch ' + str(epoch + 1) + '. Val loss is ' + str(val_loss))
print('Following stats are only for the last batch of the test set:')
iou_build, iou_road, iou_bg = IoU(predicted, labels)
print('building IoU = ' + str(iou_build) + ', road IoU = ' + str(iou_road) + ', background IoU = ' + str(
iou_bg))
# Model check point
if val_loss < np.min(loss_val, axis=0):
model_path = os.path.join(out_dir, "trained_model_checkpoint.pth")
torch.save(net, model_path)
print('Model saved at epoch ' + str(epoch+1))
# saving losses
loss_val[epoch] = val_loss
loss_train[epoch] = temp_train_loss
temp_train_loss = 0 # setting additive losses to zero
print('Training finished')
# saving model
model_path = os.path.join(out_dir, "trained_model_end.pth")
torch.save(net, model_path)
print('Model saved')
# Saving logs in a text file in the output directory
log_name = os.path.join(out_dir, "logging.txt")
with open(log_name, 'w') as result_file:
result_file.write('Logging... \n')
result_file.write('Validation loss ')
result_file.write(str(loss_val.detach().cpu().numpy()))
result_file.write('\nTraining loss ')
result_file.write(str(loss_train.detach().cpu().numpy()))
# saving loss curves
a = loss_val.cpu().detach().numpy()
b = loss_train.cpu().detach().numpy()
# print(a.shape)
print(a[0, 0:epoch])
plt.figure()
plt.plot(b[0, 0:epoch])
plt.plot(a[0, 0:epoch])
plt.title('Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend(['Training loss', 'Validation Loss'])
fname1 = str('loss.png')
plt.savefig(os.path.join(out_dir, fname1), bbox_inches='tight')
print('Training finished!!!')
if __name__ == '__main__':
main()