-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
425 lines (364 loc) · 22.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import sys
from itertools import chain
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
import torch.nn as nn
import torch
import os
import random
from argparse import ArgumentParser
from .config import cfg
from .models import SATMAE,AudioCLAP
from .dataloader import Dataset_soundscape
from .metrics import get_retrevial_metrics
import numpy as np
import sys
import warnings
if not sys.warnoptions:
warnings.simplefilter("ignore")
os.environ["WANDB__SERVICE_WAIT"] = "300"
def l2normalize(batch_embeddings):
return batch_embeddings/batch_embeddings.norm(p=2,dim=-1, keepdim=True)
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
#computer cross entropy for the similarity matrix both rowwise and columnwise
def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
modality1_loss = contrastive_loss(similarity)
modality2_loss = contrastive_loss(similarity.t())
return (modality1_loss + modality2_loss) / 2.0
def get_loss(modality1_embeddings, modality2_embeddings,logit_scale):
#similarity between moadality1 and modality2
logits_per_modality1 = torch.matmul(modality1_embeddings,modality2_embeddings.t())*logit_scale
#compute cross_entropy loss between the cross-modal similarities and hard gt
loss_mod1mod2 = clip_loss(logits_per_modality1)
return loss_mod1mod2, logits_per_modality1
class GeoCLAP(pl.LightningModule):
def __init__(self, hparams):
#save paramaters
super().__init__()
self.save_hyperparameters(hparams)
#set path attributes
self.train_path = cfg.train_csv
self.vali_path = cfg.validate_csv
self.test_path = cfg.test_csv
self.valid_end_list =[]
#Data modality: Satellite Image
if self.hparams.sat_encoder == 'SatMAE':
self.sat_encoder = SATMAE.SatMAE(pretrained_models_path=cfg.pretrained_models_path,device=self.device,fc_dim = self.hparams.fc_dim,metadata_type=self.hparams.metadata_type).to(self.device)
else:
raise NotImplementedError("Only implemented Satellite image encoder is SATMAE")
#Data modality: Audio and/or text
if self.hparams.audio_encoder == 'AudioCLAP': #accepts either audio or text
if 'audio' in self.hparams.data_type:
if not self.hparams.saved_audio_embeds: # if frozen embeddings are NOT already saved
self.audio_encoder = AudioCLAP.AudioCLAP_audiomodel(freeze=self.hparams.freeze_audio_model)
if 'text' in self.hparams.data_type:
if not self.hparams.saved_text_embeds: # if frozen embeddings are NOT already saved
self.text_encoder = AudioCLAP.AudioCLAP_textmodel(freeze=self.hparams.freeze_text_model)
if not self.hparams.saved_audio_embeds:
if 'audio' in self.hparams.data_type and self.hparams.freeze_audio_model:
self.audio_encoder.eval()
for params in self.audio_encoder.parameters():
params.requires_grad=False
if not self.hparams.saved_text_embeds:
if 'text' in self.hparams.data_type and self.hparams.freeze_text_model:
self.text_encoder.eval()
for params in self.text_encoder.parameters():
params.requires_grad=False
#trainable satellite image encoder to get embeddings for satellite image
self.sat_encoder.train()
self.temp_layer = AudioCLAP.temp_layer(self.hparams)
self.temp_clip = self.hparams.temp_clip
def get_embeds(self,batch):
embeds = {'sat_embeddings':None, 'audio_embeddings':None, 'text_embeddings':None}
if self.hparams.metadata_type == 'lat_long':
embeds['sat_embeddings'] = l2normalize(self.sat_encoder(batch['sat'].to(self.device),batch['lat_long'].to(self.device)))
else:
embeds['sat_embeddings'] = l2normalize(self.sat_encoder(batch['sat'].to(self.device)))
if self.hparams.data_type == 'sat_audio':
output = {}
if self.hparams.saved_audio_embeds:
output['audio_embeddings'] = batch['audio'].to(self.device)
else:
batch_audio = {}
for key in batch['audio'].keys():
batch_audio[key] = batch['audio'][key].to(self.device)
output['audio_embeddings'] = self.audio_encoder(batch_audio)
embeds['audio_embeddings'] = l2normalize(output['audio_embeddings'])
if self.hparams.data_type == 'sat_audio_text':
output = {}
if self.hparams.saved_audio_embeds:
output['audio_embeddings'] = batch['audio'].to(self.device)
else:
batch_audio = {}
for key in batch['audio'].keys():
batch_audio[key] = batch['audio'][key].to(self.device)
output['audio_embeddings'] = self.audio_encoder(batch_audio)
if self.hparams.saved_text_embeds:
output['text_embeddings'] = batch['text'].to(self.device)
else:
batch_text = {}
for key in batch['text'].keys():
batch_text[key] = batch['text'][key].to(self.device)
output['text_embeddings'] = self.text_encoder(batch_text)
embeds['audio_embeddings'], embeds['text_embeddings'] = l2normalize(output['audio_embeddings']), l2normalize(output['text_embeddings'])
return embeds
def forward(self, batch):
embeds = self.get_embeds(batch)
return embeds
#clamp the temperature parameter
def on_before_zero_grad(self, *args, **kwargs):
self.temp_layer.logit_scale_ia.data = torch.clamp(self.temp_layer.logit_scale_ia.data, min=1.0, max=np.log(self.hparams.temp_clip))
if self.hparams.data_type == 'sat_audio_text':
self.temp_layer.logit_scale_it.data = torch.clamp(self.temp_layer.logit_scale_it.data, min=1.0, max=np.log(self.hparams.temp_clip))
if not self.hparams.freeze_text_model:
self.temp_layer.logit_scale_at.data = torch.clamp(self.temp_layer.logit_scale_at.data, min=1.0, max=np.log(self.hparams.temp_clip))
def shared_step(self, batch):
embeds = self(batch)
audio_embeddings = embeds['audio_embeddings']
sat_embeddings = embeds['sat_embeddings']
text_embeddings = embeds['text_embeddings']
#Calculate loss
logit_scale_ia = self.temp_layer.logit_scale_ia.exp()
loss_ia, logits_per_satImage_audio = get_loss(modality1_embeddings = sat_embeddings,
modality2_embeddings=audio_embeddings,
logit_scale=logit_scale_ia)
if self.hparams.data_type == 'sat_audio_text':
logit_scale_it = self.temp_layer.logit_scale_it.exp()
loss_SatText, logits_per_satImage_text = get_loss(modality1_embeddings = sat_embeddings,
modality2_embeddings=text_embeddings,
logit_scale=logit_scale_it)
if not self.hparams.freeze_text_model:
logit_scale_at = self.temp_layer.logit_scale_at.exp()
loss_AudioText, logits_per_Audio_text = get_loss(modality1_embeddings = audio_embeddings,
modality2_embeddings=text_embeddings,
logit_scale=logit_scale_at)
loss = (loss_ia + loss_SatText + loss_AudioText)/3
return {'loss':loss,
'loss_ia':loss_ia,
'loss_it':loss_SatText,
'loss_at':loss_AudioText,
'logits_per_satImage_audio': logits_per_satImage_audio,
'normalized_audio_embeddings': audio_embeddings,
'normalized_satellite_embeddings': sat_embeddings
}
else:
loss = (1-self.hparams.text_loss_weight)*loss_ia + self.hparams.text_loss_weight*loss_SatText
return {'loss':loss,
'loss_ia':loss_ia,
'loss_it':loss_SatText,
'logits_per_satImage_audio': logits_per_satImage_audio,
'normalized_audio_embeddings': audio_embeddings,
'normalized_satellite_embeddings': sat_embeddings
}
else:
return {'loss':loss_ia,
'logits_per_satImage_audio': logits_per_satImage_audio,
'normalized_audio_embeddings': audio_embeddings,
'normalized_satellite_embeddings': sat_embeddings
}
def training_step(self, batch, batch_idx):
outputs = self.shared_step(batch)
if self.hparams.data_type == 'sat_audio':
self.log('loss', outputs['loss'], sync_dist=True, batch_size=self.hparams.train_batch_size)
self.log('logit_scale_ia',self.temp_layer.logit_scale_ia.data,sync_dist=True, batch_size=self.hparams.train_batch_size)
if self.hparams.data_type == 'sat_audio_text':
self.log('loss', outputs['loss'], sync_dist=True, batch_size=self.hparams.train_batch_size)
self.log('loss_ia', outputs['loss_ia'], sync_dist=True, batch_size=self.hparams.train_batch_size)
self.log('loss_it', outputs['loss_it'], sync_dist=True, batch_size=self.hparams.train_batch_size)
self.log('logit_scale_ia',self.temp_layer.logit_scale_ia.data,sync_dist=True, batch_size=self.hparams.train_batch_size)
self.log('logit_scale_it',self.temp_layer.logit_scale_it.data,sync_dist=True, batch_size=self.hparams.train_batch_size)
if not self.hparams.freeze_text_model:
self.log('loss_at', outputs['loss_at'], sync_dist=True, batch_size=self.hparams.train_batch_size)
self.log('logit_scale_at',self.temp_layer.logit_scale_at.data,sync_dist=True, batch_size=self.hparams.train_batch_size)
return outputs['loss']
def validation_step(self, batch, batch_idx):
outputs = self.shared_step(batch)
val_loss = outputs['loss']
self.log('val_loss', val_loss, sync_dist=True, batch_size=self.hparams.val_batch_size, prog_bar=True)
final_output = {'val_loss':outputs['loss'],'normalized_satellite_embeddings':outputs['normalized_satellite_embeddings'], 'normalized_audio_embeddings':outputs['normalized_audio_embeddings']}
self.valid_end_list.append(final_output)
return final_output
#compute retrieval metrics for a random batch of validation
def on_validation_epoch_end(self):
# import code;code.interact(local=dict(globals(), **locals()));
outputs = self.valid_end_list
if len(outputs)==0:
print('Skipping Validatiion Epoch End')
pass
else:
random_batch = np.random.randint(0,len(outputs))
validation_embeddings = outputs[random_batch]
normalized_satellite_embeddings = validation_embeddings['normalized_satellite_embeddings']
normalized_audio_embeddings = validation_embeddings['normalized_audio_embeddings']
retrieval_results = get_retrevial_metrics(modality1_emb=normalized_satellite_embeddings, modality2_emb=normalized_audio_embeddings, normalized=True,k=10)
self.log(f'R@10', retrieval_results['R@10'])
self.log(f'Median Rank', retrieval_results['Median Rank'])
self.valid_end_list = []
return retrieval_results
def train_dataloader(self):
train_csv = cfg.train_csv
trainloader = torch.utils.data.DataLoader(Dataset_soundscape(
data_file=train_csv,
is_train = True,
sat_input_size= self.hparams.sat_input_size,
sat_model= self.hparams.sat_encoder,
audio_model= self.hparams.audio_encoder,
data_type = self.hparams.data_type,
metadata_type= self.hparams.metadata_type,
saved_audio_embeds= self.hparams.saved_audio_embeds,
saved_text_embeds= self.hparams.saved_text_embeds,
sat_type = self.hparams.sat_type,
text_type = self.hparams.text_type),
num_workers=self.hparams.num_workers, batch_size=self.hparams.train_batch_size, shuffle=True, drop_last=False,pin_memory=True)
return trainloader
def val_dataloader(self):
validate_csv = cfg.validate_csv
validloader = torch.utils.data.DataLoader(Dataset_soundscape(
data_file=validate_csv,
is_train = False,
sat_input_size= self.hparams.sat_input_size,
sat_model= self.hparams.sat_encoder,
audio_model= self.hparams.audio_encoder,
data_type = self.hparams.data_type,
metadata_type= self.hparams.metadata_type,
saved_audio_embeds= self.hparams.saved_audio_embeds,
saved_text_embeds= self.hparams.saved_text_embeds,
sat_type = self.hparams.sat_type,
text_type = self.hparams.text_type),
num_workers=self.hparams.num_workers, batch_size=self.hparams.val_batch_size, shuffle=False, drop_last=False,pin_memory=True)
return validloader
def test_dataloader(self):
test_csv = cfg.test_csv
testloader = torch.utils.data.DataLoader(Dataset_soundscape(
data_file=test_csv,
is_train = False,
sat_input_size= self.hparams.sat_input_size,
sat_model= self.hparams.sat_encoder,
audio_model= self.hparams.audio_encoder,
data_type = self.hparams.data_type,
metadata_type= self.hparams.metadata_type,
saved_audio_embeds= self.hparams.saved_audio_embeds,
saved_text_embeds= self.hparams.saved_text_embeds,
sat_type = self.hparams.sat_type,
text_type = self.hparams.text_type),
num_workers=self.hparams.num_workers, batch_size=self.hparams.test_batch_size, shuffle=False, drop_last=False,pin_memory=True)
return testloader
def configure_optimizers(self):
print(f'Initializing Learning rate {self.hparams.learning_rate}')
if self.hparams.data_type == 'sat_audio':
if self.hparams.saved_audio_embeds or self.hparams.freeze_audio_model:
params = chain(self.sat_encoder.parameters(),self.temp_layer.parameters())
else:
params = chain(self.sat_encoder.parameters(),self.audio_encoder.parameters(),self.temp_layer.parameters())
elif self.hparams.data_type == 'sat_audio_text':
if self.hparams.saved_text_embeds or self.hparams.freeze_text_model:
params = chain(self.sat_encoder.parameters(),self.temp_layer.parameters())
else:
params = chain(self.sat_encoder.parameters(),self.audio_encoder.parameters(),self.text_encoder.parameters(),self.temp_layer.parameters())
self.optim = torch.optim.AdamW(params=params,
lr=self.hparams.learning_rate,
weight_decay=0.2,
betas=(0.9,0.98),
eps=1e-6
)
self.warm_up_iterations = 2000
self.scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
optimizer = self.optim,
T_0 = self.warm_up_iterations
)
return {'optimizer': self.optim,
'lr_scheduler': {
'name':'train/lr',
'scheduler': self.scheduler,
'interval': 'step',
'frequency': 1
}
}
def set_seed(seed: int = 56) -> None:
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# When running on the CuDNN backend, two further options must be set
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Set a fixed value for the hash seed
os.environ["PYTHONHASHSEED"] = str(seed)
print(f"Random seed set as {seed}")
def get_args():
parser = ArgumentParser(description='')
#training hparams
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--train_batch_size', type=int, default=256)
parser.add_argument('--val_batch_size', type=int, default=256)
parser.add_argument('--test_batch_size', type=int, default=256)
parser.add_argument('--max_epochs', type=int, default=100)
parser.add_argument('--mode', type=str, default='dev') #Options: dev, train
parser.add_argument('--freeze_audio_model', type=lambda x: (str(x).lower() == 'true'), default=True)
parser.add_argument('--saved_audio_embeds',type=lambda x: (str(x).lower() == 'true'), default=True)
parser.add_argument('--freeze_text_model',type=lambda x: (str(x).lower() == 'true'), default=True)
parser.add_argument('--saved_text_embeds',type=lambda x: (str(x).lower() == 'true'), default=True)
parser.add_argument('--data_type', type=str, default='sat_audio')
parser.add_argument('--sat_type', type=str, default='SoundingEarth') #Options: [SoundingEarth, sentinel]
parser.add_argument('--text_type', type=str, default='with_address') #Options: [with_address, without_address, only_address]
parser.add_argument('--metadata_type', type=str, default='none') #Options: none, lat_long
parser.add_argument('--text_loss_weight', type=float, default=0.5)
parser.add_argument('--learning_rate', type=float, default=5e-5)
parser.add_argument('--project_name', type=str, default='GeoCLAP')
parser.add_argument('--run_name', type=str, default='debug')
parser.add_argument('--wandb_mode', type=str, default='disabled')
parser.add_argument('--strategy', type=str, default='ddp_find_unused_parameters_false')
parser.add_argument('--accelerator',type=str, default='gpu')
parser.add_argument('--devices', type=int, default=1)
parser.add_argument('--val_check_interval', type=int, default=1.0)
# encoder types:
parser.add_argument('--sat_encoder',type=str,default='SatMAE')
parser.add_argument('--audio_encoder',type=str,default='AudioCLAP')
parser.add_argument('--fc_dim', type=int, default = 512)
parser.add_argument('--sat_input_size', type=int, default= 224)
#cilp specific hparams
parser.add_argument('--temperature', type=float, default=0.07)
parser.add_argument('--temp_clip',type=int, default =100)
#logging hparams
parser.add_argument('--ckpt_path',type=str, default ='none')
parser.add_argument('--ckpt_mode',type=str, default ='hard')
args = parser.parse_args()
return args
if __name__ == '__main__':
set_seed(56)
args = get_args()
#set learning rate logger
print('Starting Training')
print(args)
#initliaze model
geoclap_model = GeoCLAP(args)
#initialize checkpoints and loggers
lr_logger = LearningRateMonitor(logging_interval='step')
wb_logger = WandbLogger(save_dir=cfg.log_dir,project=args.project_name, name=args.run_name, mode=args.wandb_mode)
ckpt_monitors = ((
ModelCheckpoint(monitor='val_loss', filename='{epoch}-{step}-{val_loss:.3f}', save_top_k = 5, every_n_epochs = 1,save_last=True,save_on_train_epoch_end=True)
))
if args.mode == 'dev':
print('Development Test Run')
trainer = pl.Trainer(precision=16,fast_dev_run=6, max_epochs=4, logger=wb_logger, strategy=args.strategy, num_sanity_val_steps=4,
accelerator=args.accelerator, devices=args.devices, callbacks=[ckpt_monitors, lr_logger])
elif args.mode == 'train':
print('Training Run')
trainer = pl.Trainer(precision=16, max_epochs=args.max_epochs, logger=wb_logger, strategy=args.strategy, num_sanity_val_steps=0,
accelerator=args.accelerator, devices=args.devices, callbacks=[ckpt_monitors, lr_logger],
val_check_interval=args.val_check_interval, log_every_n_steps=25)
else:
raise ValueError('Invalid value for mode')
if args.ckpt_path.lower()=='none'.lower():
trainer.fit(geoclap_model)
else:
if args.ckpt_mode.lower()=='hard':
print('Hard Checkpoint Reload')
trainer.fit(geoclap_model, ckpt_path=args.ckpt_path)
elif args.ckpt_mode.lower()=='soft':
print('Soft Checkpoint Reload')
checkpoint = torch.load(args.ckpt_path)
geoclap_model.load_state_dict(checkpoint['state_dict'])
trainer.fit(geoclap_model)