forked from Usman-Rafique/Probabilistic_UNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
executable file
·140 lines (115 loc) · 4.05 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# train a probabilistic U-Net model
import torch
import torch.nn as nn
import numpy as np
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
import matplotlib.pyplot as plt
from load_LIDC_data import LIDC_IDRI
from probabilistic_unet import ProbabilisticUnet
import pickle
import os
# optimization settings
lr = 1e-5
l2_reg = 1e-6
lr_decay_every = 5 # decay LR after this many epochs
lr_decay = 0.95
batch_size_train = 20
batch_size_val = 1
epochs = 35
# checkpoint directory
out_dir = 'outputs/1'
if not os.path.exists(out_dir):
os.makedirs(out_dir)
else:
print('Folder already exists. Existing models and training logs will be replaced')
# data
dataset = LIDC_IDRI(dataset_location = 'data/')
dataset_size = len(dataset)
indices = list(range(dataset_size))
split = int(np.floor(0.1 * dataset_size))
#np.random.shuffle(indices)
print('There is no random shuffle: initial portion of the dataset is used for train and the last portion for validation')
train_indices, test_indices = indices[split:], indices[:split]
train_sampler = SubsetRandomSampler(train_indices)
test_sampler = SubsetRandomSampler(test_indices)
train_loader = DataLoader(dataset, batch_size=batch_size_train, sampler=train_sampler)
test_loader = DataLoader(dataset, batch_size=batch_size_val, sampler=test_sampler)
print("Number of training/test patches:", (len(train_indices),len(test_indices)))
# network
net = ProbabilisticUnet(input_channels=1, num_classes=1, num_filters=[32,64,128,192], latent_dim=2, no_convs_fcomb=4, beta=10.0)
net.cuda()
# optimizer
optimizer = torch.optim.Adam(net.parameters(), lr=lr, weight_decay=l2_reg)
secheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=lr_decay_every, gamma=lr_decay)
# logging
train_loss = []
test_loss = []
best_val_loss = 999.0
for epoch in range(epochs):
net.train()
loss_train = 0
loss_segmentation = 0
# training loop
for step, (patch, mask, _) in enumerate(train_loader):
patch = patch.cuda()
mask = mask.cuda()
mask = torch.unsqueeze(mask,1)
net.forward(patch, mask, training=True)
elbo = net.elbo(mask)
loss = -elbo
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_train += loss.detach().cpu().item()
if step%100==0:
print('[Ep ', epoch+1, (step+1), ' of ', len(train_loader) ,'] train loss: ', loss_train/(step+1))
# end of training loop
loss_train /= len(train_loader)
# valdiation loop
net.eval()
loss_val = 0
with torch.no_grad():
for step, (patch, mask, _) in enumerate(test_loader):
patch = patch.cuda()
mask = mask.cuda()
mask = torch.unsqueeze(mask,1)
net.forward(patch, mask, training=True)
elbo = net.elbo(mask)
loss = -elbo
loss_val += loss.detach().cpu().item()
# end of validation
loss_val /= len(test_loader)
train_loss.append(loss_train)
test_loss.append(loss_val)
print('End of epoch ', epoch+1, ' , Train loss: ', loss_train, ', val loss: ', loss_val)
secheduler.step()
# save best model checkpoint
if loss_val < best_val_loss:
best_val_loss = loss_val
fname = 'model_dict.pth'
torch.save(net.state_dict(), os.path.join(out_dir, fname))
print('model saved at epoch: ', epoch+1)
print('Finished training')
# save loss curves
plt.figure()
plt.plot(train_loss)
plt.title('train loss')
fname = os.path.join(out_dir,'loss_train.png')
plt.savefig(fname)
plt.close()
plt.figure()
plt.plot(test_loss)
plt.title('val loss')
fname = os.path.join(out_dir,'loss_val.png')
plt.savefig(fname)
plt.close()
# plt.show()
# Saving logs
log_name = os.path.join(out_dir, "logging.txt")
with open(log_name, 'w') as result_file:
result_file.write('Logging... \n')
result_file.write('Validation loss ')
result_file.write(str(test_loss))
result_file.write('\nTraining loss ')
result_file.write(str(train_loss))