-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeras_image_classification_multi_categorical_crossentropy.log
755 lines (708 loc) · 29.7 KB
/
keras_image_classification_multi_categorical_crossentropy.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
# Create output layer with 4 node(4-class) and sigmoid activation
#output = layers.Dense(4, activation='sigmoid')(x)
output = layers.Dense(4, activation='softmax')(x)
# Create model:
model = Model(img_input, output)
# Compile model
model.compile(loss='categorical_crossentropy',
optimizer=Adam(),#RMSprop(lr=0.001),
#,optimizer=SGD(lr=1e-4, momentum=0.9)
metrics=['acc'])
=============train_datagen & val_datagen batch_size=14 & steps_per_epoch=95/14
7/6 - 3s - loss: 1.4740 - acc: 0.3053 - val_loss: 1.3883 - val_acc: 0.3333
Epoch 2/50
7/6 - 1s - loss: 1.4262 - acc: 0.2211 - val_loss: 1.3878 - val_acc: 0.2222
Epoch 3/50
7/6 - 1s - loss: 1.3818 - acc: 0.2737 - val_loss: 1.3833 - val_acc: 0.3333
Epoch 4/50
7/6 - 1s - loss: 1.3863 - acc: 0.2632 - val_loss: 1.3811 - val_acc: 0.3333
Epoch 5/50
7/6 - 1s - loss: 1.3620 - acc: 0.3579 - val_loss: 1.3793 - val_acc: 0.3333
Epoch 6/50
7/6 - 1s - loss: 1.3533 - acc: 0.2211 - val_loss: 1.3701 - val_acc: 0.2778
Epoch 7/50
7/6 - 1s - loss: 1.3411 - acc: 0.3158 - val_loss: 1.3575 - val_acc: 0.3333
Epoch 8/50
7/6 - 1s - loss: 1.3088 - acc: 0.3474 - val_loss: 1.3376 - val_acc: 0.5000
Epoch 9/50
7/6 - 1s - loss: 1.2142 - acc: 0.5579 - val_loss: 1.2307 - val_acc: 0.6111
Epoch 10/50
7/6 - 1s - loss: 1.0678 - acc: 0.5053 - val_loss: 1.0566 - val_acc: 0.7222
Epoch 11/50
7/6 - 1s - loss: 0.9914 - acc: 0.5579 - val_loss: 1.1081 - val_acc: 0.3889
Epoch 12/50
7/6 - 1s - loss: 0.9393 - acc: 0.5684 - val_loss: 0.9826 - val_acc: 0.6111
Epoch 13/50
7/6 - 1s - loss: 0.6940 - acc: 0.7053 - val_loss: 0.8639 - val_acc: 0.6111
Epoch 14/50
7/6 - 1s - loss: 0.8318 - acc: 0.6000 - val_loss: 0.7978 - val_acc: 0.5556
Epoch 15/50
7/6 - 1s - loss: 0.5273 - acc: 0.7579 - val_loss: 0.7448 - val_acc: 0.6111
Epoch 16/50
7/6 - 1s - loss: 0.6337 - acc: 0.7158 - val_loss: 0.8857 - val_acc: 0.6111
Epoch 17/50
7/6 - 1s - loss: 0.5243 - acc: 0.7684 - val_loss: 0.6613 - val_acc: 0.8333
Epoch 18/50
7/6 - 1s - loss: 0.3622 - acc: 0.8316 - val_loss: 0.9130 - val_acc: 0.7778
Epoch 19/50
7/6 - 1s - loss: 0.3801 - acc: 0.8421 - val_loss: 0.7626 - val_acc: 0.8333
Epoch 20/50
7/6 - 1s - loss: 0.2820 - acc: 0.8737 - val_loss: 0.7489 - val_acc: 0.7778
Epoch 21/50
7/6 - 1s - loss: 0.3044 - acc: 0.8737 - val_loss: 1.1160 - val_acc: 0.5000
Epoch 22/50
7/6 - 1s - loss: 0.2443 - acc: 0.9263 - val_loss: 0.7759 - val_acc: 0.7778
Epoch 23/50
7/6 - 1s - loss: 0.2240 - acc: 0.9474 - val_loss: 1.0746 - val_acc: 0.5556
Epoch 24/50
7/6 - 1s - loss: 0.3261 - acc: 0.8737 - val_loss: 0.6705 - val_acc: 0.7778
Epoch 25/50
7/6 - 1s - loss: 0.1911 - acc: 0.9053 - val_loss: 0.9043 - val_acc: 0.6667
Epoch 26/50
7/6 - 1s - loss: 0.1906 - acc: 0.9263 - val_loss: 0.9787 - val_acc: 0.7778
Epoch 27/50
7/6 - 1s - loss: 0.1434 - acc: 0.9684 - val_loss: 0.8488 - val_acc: 0.6667
=-====================== best model save(17/50)
[True, True, True, False, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, False, True, True]
20
24
0.8333333333333334
======================= end save
=============train_datagen & val_datagen batch_size=8 & steps_per_epoch=95/8
Epoch 2/50
12/11 - 1s - loss: 1.3570 - acc: 0.2632 - val_loss: 1.3676 - val_acc: 0.2222
Epoch 3/50
12/11 - 1s - loss: 1.3294 - acc: 0.2632 - val_loss: 1.3248 - val_acc: 0.2222
Epoch 4/50
12/11 - 1s - loss: 1.2341 - acc: 0.4211 - val_loss: 1.2516 - val_acc: 0.5000
Epoch 5/50
12/11 - 1s - loss: 1.1012 - acc: 0.5368 - val_loss: 1.1262 - val_acc: 0.3333
Epoch 6/50
12/11 - 1s - loss: 0.9315 - acc: 0.5579 - val_loss: 0.9974 - val_acc: 0.4444
Epoch 7/50
12/11 - 1s - loss: 0.7087 - acc: 0.7474 - val_loss: 0.7988 - val_acc: 0.7778
Epoch 8/50
12/11 - 1s - loss: 0.5658 - acc: 0.7895 - val_loss: 0.8148 - val_acc: 0.7778
Epoch 9/50
12/11 - 1s - loss: 0.4630 - acc: 0.8105 - val_loss: 0.6758 - val_acc: 0.7778
Epoch 10/50
12/11 - 1s - loss: 0.2281 - acc: 0.9263 - val_loss: 0.5640 - val_acc: 0.9444
Epoch 11/50
12/11 - 1s - loss: 0.2970 - acc: 0.8947 - val_loss: 0.7121 - val_acc: 0.8333
Epoch 12/50
12/11 - 1s - loss: 0.3239 - acc: 0.8421 - val_loss: 0.5827 - val_acc: 0.8889
Epoch 13/50
12/11 - 1s - loss: 0.1958 - acc: 0.9263 - val_loss: 0.4920 - val_acc: 0.8889
Epoch 14/50
12/11 - 1s - loss: 0.1765 - acc: 0.9474 - val_loss: 0.4403 - val_acc: 0.9444
Epoch 15/50
12/11 - 1s - loss: 0.1713 - acc: 0.9263 - val_loss: 0.6751 - val_acc: 0.8889
Epoch 16/50
12/11 - 1s - loss: 0.1693 - acc: 0.9474 - val_loss: 0.3930 - val_acc: 0.9444
Epoch 17/50
12/11 - 1s - loss: 0.1037 - acc: 0.9789 - val_loss: 0.6398 - val_acc: 0.8889
Epoch 18/50
12/11 - 1s - loss: 0.0902 - acc: 0.9579 - val_loss: 0.5238 - val_acc: 0.9444
Epoch 19/50
12/11 - 1s - loss: 0.0667 - acc: 0.9579 - val_loss: 0.6423 - val_acc: 0.9444
Epoch 20/50
12/11 - 1s - loss: 0.0278 - acc: 0.9895 - val_loss: 0.7196 - val_acc: 0.8889
Epoch 21/50
12/11 - 1s - loss: 0.0612 - acc: 0.9684 - val_loss: 0.6409 - val_acc: 0.9444
Epoch 22/50
12/11 - 1s - loss: 0.0379 - acc: 0.9895 - val_loss: 1.1552 - val_acc: 0.8889
Epoch 23/50
12/11 - 1s - loss: 0.0626 - acc: 0.9895 - val_loss: 0.8743 - val_acc: 0.9444
Epoch 24/50
12/11 - 1s - loss: 0.0969 - acc: 0.9579 - val_loss: 0.4726 - val_acc: 0.9444
Epoch 25/50
12/11 - 1s - loss: 0.0809 - acc: 0.9789 - val_loss: 0.7113 - val_acc: 0.9444
Epoch 26/50
12/11 - 1s - loss: 0.0730 - acc: 0.9789 - val_loss: 0.6977 - val_acc: 0.9444
=-====================== best model save(17/50)
[True, True, True, False, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, False, True, True]
22
24
0.9166666666666666
======================= end save
=============train_datagen & val_datagen batch_size=6
2/12 - 1s - loss: 0.3249 - acc: 0.8310 - val_loss: 0.4781 - val_acc: 0.7778
Epoch 20/50
12/12 - 1s - loss: 0.5434 - acc: 0.7606 - val_loss: 0.6544 - val_acc: 0.6111
Epoch 21/50
12/12 - 1s - loss: 0.4161 - acc: 0.8732 - val_loss: 0.4632 - val_acc: 0.7778
Epoch 22/50
12/12 - 1s - loss: 0.6663 - acc: 0.8169 - val_loss: 0.6630 - val_acc: 0.6667
Epoch 23/50
12/12 - 1s - loss: 0.3692 - acc: 0.8333 - val_loss: 0.5308 - val_acc: 0.8333
Epoch 24/50
12/12 - 1s - loss: 0.2377 - acc: 0.9155 - val_loss: 0.3685 - val_acc: 0.8889
Epoch 25/50
12/12 - 1s - loss: 0.1982 - acc: 0.9444 - val_loss: 0.1220 - val_acc: 0.9444
Epoch 26/50
12/12 - 1s - loss: 0.2708 - acc: 0.9143 - val_loss: 0.1988 - val_acc: 0.9444
Epoch 27/50
12/12 - 1s - loss: 0.2910 - acc: 0.8889 - val_loss: 0.5431 - val_acc: 0.7222
Epoch 28/50
12/12 - 1s - loss: 0.3683 - acc: 0.8169 - val_loss: 0.4691 - val_acc: 0.8889
Epoch 29/50
12/12 - 1s - loss: 0.2462 - acc: 0.9155 - val_loss: 0.3278 - val_acc: 0.9444
Epoch 30/50
12/12 - 1s - loss: 0.2702 - acc: 0.9028 - val_loss: 0.2364 - val_acc: 0.9444
Epoch 31/50
12/12 - 1s - loss: 0.0879 - acc: 0.9571 - val_loss: 0.1550 - val_acc: 0.9444
Epoch 32/50
12/12 - 1s - loss: 0.0536 - acc: 1.0000 - val_loss: 0.0984 - val_acc: 1.0000
Epoch 33/50
12/12 - 1s - loss: 0.0685 - acc: 0.9859 - val_loss: 0.2587 - val_acc: 0.9444
Epoch 34/50
12/12 - 1s - loss: 0.1105 - acc: 0.9861 - val_loss: 0.0693 - val_acc: 1.0000
Epoch 35/50
12/12 - 1s - loss: 0.0305 - acc: 0.9859 - val_loss: 0.1272 - val_acc: 0.9444
Epoch 36/50
12/12 - 1s - loss: 0.1022 - acc: 0.9437 - val_loss: 0.1554 - val_acc: 0.9444
Epoch 37/50
12/12 - 1s - loss: 0.1684 - acc: 0.9296 - val_loss: 0.4023 - val_acc: 0.8889
Epoch 38/50
12/12 - 1s - loss: 0.1232 - acc: 0.9722 - val_loss: 0.5180 - val_acc: 0.8333
Epoch 39/50
12/12 - 1s - loss: 0.0507 - acc: 0.9859 - val_loss: 0.3123 - val_acc: 0.8889
Epoch 40/50
12/12 - 1s - loss: 0.0076 - acc: 1.0000 - val_loss: 0.2028 - val_acc: 0.9444
Epoch 41/50
12/12 - 1s - loss: 0.0153 - acc: 0.9861 - val_loss: 0.1347 - val_acc: 0.9444
Epoch 42/50
12/12 - 1s - loss: 0.1496 - acc: 0.9437 - val_loss: 0.2540 - val_acc: 0.9444
Epoch 43/50
12/12 - 1s - loss: 0.0925 - acc: 0.9577 - val_loss: 0.2429 - val_acc: 0.9444
Epoch 44/50
12/12 - 1s - loss: 0.0257 - acc: 0.9859 - val_loss: 0.3292 - val_acc: 0.9444
=-====================== best model save(17/50)
22
24
0.9166666666666666
======================= end save
21
24
0.875
=============train_datagen & val_datagen batch_size=6
Epoch 1/50
"Palette images with Transparency expressed in bytes should be "
12/12 - 3s - loss: 1.7387 - acc: 0.2394 - val_loss: 1.3862 - val_acc: 0.2222
Epoch 2/50
12/12 - 1s - loss: 1.3926 - acc: 0.2778 - val_loss: 1.3887 - val_acc: 0.2222
Epoch 3/50
12/12 - 1s - loss: 1.3959 - acc: 0.1857 - val_loss: 1.3877 - val_acc: 0.2222
Epoch 4/50
12/12 - 1s - loss: 1.3849 - acc: 0.2778 - val_loss: 1.3887 - val_acc: 0.2222
Epoch 5/50
12/12 - 1s - loss: 1.3857 - acc: 0.2676 - val_loss: 1.3898 - val_acc: 0.1667
Epoch 6/50
12/12 - 1s - loss: 1.3883 - acc: 0.2222 - val_loss: 1.3888 - val_acc: 0.2222
Epoch 7/50
12/12 - 1s - loss: 1.3847 - acc: 0.3286 - val_loss: 1.3889 - val_acc: 0.2222
Epoch 8/50
12/12 - 1s - loss: 1.3868 - acc: 0.2361 - val_loss: 1.3883 - val_acc: 0.2222
Epoch 9/50
12/12 - 1s - loss: 1.3816 - acc: 0.2817 - val_loss: 1.3891 - val_acc: 0.2222
Epoch 10/50
12/12 - 1s - loss: 1.3789 - acc: 0.3472 - val_loss: 1.3851 - val_acc: 0.2222
Epoch 11/50
12/12 - 1s - loss: 1.3962 - acc: 0.4000 - val_loss: 1.3881 - val_acc: 0.2222
Epoch 12/50
12/12 - 1s - loss: 1.3750 - acc: 0.3194 - val_loss: 1.3770 - val_acc: 0.5000
Epoch 13/50
12/12 - 1s - loss: 1.3784 - acc: 0.2958 - val_loss: 1.3708 - val_acc: 0.2778
Epoch 14/50
12/12 - 1s - loss: 1.3432 - acc: 0.3889 - val_loss: 1.3365 - val_acc: 0.3889
Epoch 15/50
12/12 - 1s - loss: 1.2499 - acc: 0.4000 - val_loss: 1.2181 - val_acc: 0.6667
Epoch 16/50
12/12 - 1s - loss: 1.2217 - acc: 0.4167 - val_loss: 1.3002 - val_acc: 0.3333
Epoch 17/50
12/12 - 1s - loss: 0.9832 - acc: 0.5694 - val_loss: 1.0487 - val_acc: 0.5556
Epoch 18/50
12/12 - 1s - loss: 0.9038 - acc: 0.5429 - val_loss: 0.7331 - val_acc: 0.7222
Epoch 19/50
12/12 - 1s - loss: 0.8739 - acc: 0.6389 - val_loss: 0.8316 - val_acc: 0.6667
Epoch 20/50
12/12 - 1s - loss: 0.6511 - acc: 0.6620 - val_loss: 0.6160 - val_acc: 0.8333
Epoch 21/50
12/12 - 1s - loss: 0.5675 - acc: 0.8333 - val_loss: 0.6635 - val_acc: 0.7222
Epoch 22/50
12/12 - 1s - loss: 0.9444 - acc: 0.6143 - val_loss: 0.9749 - val_acc: 0.5000
Epoch 23/50
12/12 - 1s - loss: 0.5853 - acc: 0.7917 - val_loss: 0.7640 - val_acc: 0.6111
Epoch 24/50
12/12 - 1s - loss: 0.3524 - acc: 0.8732 - val_loss: 0.6365 - val_acc: 0.7778
Epoch 25/50
12/12 - 1s - loss: 0.3922 - acc: 0.8750 - val_loss: 0.4557 - val_acc: 0.8333
Epoch 26/50
12/12 - 1s - loss: 0.4058 - acc: 0.8873 - val_loss: 0.9184 - val_acc: 0.6111
Epoch 27/50
12/12 - 1s - loss: 0.2918 - acc: 0.8873 - val_loss: 0.5392 - val_acc: 0.8889
Epoch 28/50
12/12 - 1s - loss: 0.2852 - acc: 0.9155 - val_loss: 0.8592 - val_acc: 0.7222
Epoch 29/50
12/12 - 1s - loss: 0.1907 - acc: 0.9155 - val_loss: 0.6888 - val_acc: 0.7778
Epoch 30/50
12/12 - 1s - loss: 0.2106 - acc: 0.9296 - val_loss: 0.7497 - val_acc: 0.8333
Epoch 31/50
12/12 - 1s - loss: 0.1489 - acc: 0.9444 - val_loss: 0.7338 - val_acc: 0.7222
Epoch 32/50
12/12 - 1s - loss: 0.1640 - acc: 0.9577 - val_loss: 0.7759 - val_acc: 0.8333
Epoch 33/50
12/12 - 1s - loss: 0.0594 - acc: 0.9859 - val_loss: 0.9707 - val_acc: 0.7778
Epoch 34/50
12/12 - 1s - loss: 0.1665 - acc: 0.9577 - val_loss: 0.8778 - val_acc: 0.8333
Epoch 35/50
12/12 - 1s - loss: 0.1040 - acc: 0.9722 - val_loss: 0.8476 - val_acc: 0.8333
=-====================== best model
[True, False, False, False, True, True, True, False, True, True, True, True, True, True, True, True, False, False, True, True, True, True, True, True]
18
24
0.75
======================= end save
19
24
0.7916666666666666
=============train_datagen & val_datagen batch_size=6
12/12 - 3s - loss: 1.5069 - acc: 0.2113 - val_loss: 1.3843 - val_acc: 0.2778
Epoch 2/50
12/12 - 1s - loss: 1.4093 - acc: 0.2254 - val_loss: 1.3933 - val_acc: 0.3333
Epoch 3/50
12/12 - 1s - loss: 1.3555 - acc: 0.3472 - val_loss: 1.3699 - val_acc: 0.2222
Epoch 4/50
12/12 - 1s - loss: 1.3288 - acc: 0.2676 - val_loss: 1.3160 - val_acc: 0.3889
Epoch 5/50
12/12 - 1s - loss: 1.2926 - acc: 0.4085 - val_loss: 1.2605 - val_acc: 0.6111
Epoch 6/50
12/12 - 1s - loss: 1.1319 - acc: 0.5915 - val_loss: 1.1348 - val_acc: 0.5000
Epoch 7/50
12/12 - 1s - loss: 1.0380 - acc: 0.5972 - val_loss: 0.8520 - val_acc: 0.6667
Epoch 8/50
12/12 - 1s - loss: 0.8424 - acc: 0.6197 - val_loss: 1.1161 - val_acc: 0.3889
Epoch 9/50
12/12 - 1s - loss: 0.8065 - acc: 0.6250 - val_loss: 0.7445 - val_acc: 0.7778
Epoch 10/50
12/12 - 1s - loss: 0.6401 - acc: 0.7183 - val_loss: 0.5546 - val_acc: 0.9444
Epoch 11/50
12/12 - 1s - loss: 0.6773 - acc: 0.7042 - val_loss: 1.1341 - val_acc: 0.5000
Epoch 12/50
12/12 - 1s - loss: 0.7293 - acc: 0.6338 - val_loss: 1.0154 - val_acc: 0.5556
Epoch 13/50
12/12 - 1s - loss: 0.7866 - acc: 0.6761 - val_loss: 0.8060 - val_acc: 0.7778
Epoch 14/50
12/12 - 1s - loss: 0.4485 - acc: 0.8333 - val_loss: 0.8920 - val_acc: 0.7222
Epoch 15/50
12/12 - 1s - loss: 0.3676 - acc: 0.8169 - val_loss: 0.5344 - val_acc: 0.7778
Epoch 16/50
12/12 - 1s - loss: 0.4782 - acc: 0.8592 - val_loss: 0.7138 - val_acc: 0.7222
Epoch 17/50
12/12 - 1s - loss: 0.3980 - acc: 0.8592 - val_loss: 0.6684 - val_acc: 0.7778
Epoch 18/50
12/12 - 1s - loss: 0.2433 - acc: 0.9296 - val_loss: 0.6507 - val_acc: 0.7778
Epoch 19/50
12/12 - 1s - loss: 0.1552 - acc: 0.9722 - val_loss: 0.5813 - val_acc: 0.7778
Epoch 20/50
12/12 - 1s - loss: 0.2698 - acc: 0.8873 - val_loss: 0.6552 - val_acc: 0.7778
Epoch 21/50
12/12 - 1s - loss: 0.1110 - acc: 0.9577 - val_loss: 0.6749 - val_acc: 0.7778
Epoch 22/50
12/12 - 1s - loss: 0.1377 - acc: 0.9583 - val_loss: 0.7574 - val_acc: 0.7222
Epoch 23/50
12/12 - 1s - loss: 0.0992 - acc: 0.9577 - val_loss: 0.5383 - val_acc: 0.8333
Epoch 24/50
12/12 - 1s - loss: 0.1378 - acc: 0.9296 - val_loss: 0.6087 - val_acc: 0.7778
Epoch 25/50
12/12 - 1s - loss: 0.0415 - acc: 1.0000 - val_loss: 0.5924 - val_acc: 0.8333
=-====================== best model
======================= end save
19
24
0.7916666666666666
=============train_datagen & val_datagen batch_size=6
Epoch 1/50
"Palette images with Transparency expressed in bytes should be "
12/12 - 3s - loss: 1.5876 - acc: 0.2394 - val_loss: 1.3829 - val_acc: 0.3333
Epoch 2/50
12/12 - 1s - loss: 1.4057 - acc: 0.2113 - val_loss: 1.3847 - val_acc: 0.3333
Epoch 3/50
12/12 - 1s - loss: 1.3950 - acc: 0.1944 - val_loss: 1.3838 - val_acc: 0.2778
Epoch 4/50
12/12 - 1s - loss: 1.3768 - acc: 0.2535 - val_loss: 1.3699 - val_acc: 0.2778
Epoch 5/50
12/12 - 1s - loss: 1.3094 - acc: 0.3472 - val_loss: 1.3312 - val_acc: 0.5556
Epoch 6/50
12/12 - 1s - loss: 1.3109 - acc: 0.4225 - val_loss: 1.1574 - val_acc: 0.5556
Epoch 7/50
12/12 - 1s - loss: 1.1116 - acc: 0.4930 - val_loss: 0.9733 - val_acc: 0.6111
Epoch 8/50
12/12 - 1s - loss: 1.1613 - acc: 0.5634 - val_loss: 1.1057 - val_acc: 0.5000
Epoch 9/50
12/12 - 1s - loss: 0.8463 - acc: 0.6620 - val_loss: 0.5694 - val_acc: 0.7778
Epoch 10/50
12/12 - 1s - loss: 0.5809 - acc: 0.7606 - val_loss: 0.6953 - val_acc: 0.6111
Epoch 11/50
12/12 - 1s - loss: 0.6425 - acc: 0.7324 - val_loss: 0.4259 - val_acc: 0.8333
Epoch 12/50
12/12 - 1s - loss: 0.6339 - acc: 0.7083 - val_loss: 0.8621 - val_acc: 0.6111
Epoch 13/50
12/12 - 1s - loss: 0.5373 - acc: 0.8169 - val_loss: 0.4460 - val_acc: 0.7778
Epoch 14/50
12/12 - 1s - loss: 0.5271 - acc: 0.8310 - val_loss: 0.6876 - val_acc: 0.6111
Epoch 15/50
12/12 - 1s - loss: 0.3585 - acc: 0.8472 - val_loss: 0.3363 - val_acc: 0.7778
Epoch 16/50
12/12 - 1s - loss: 0.2936 - acc: 0.9014 - val_loss: 0.4387 - val_acc: 0.8889
Epoch 17/50
12/12 - 1s - loss: 0.4390 - acc: 0.8592 - val_loss: 0.4149 - val_acc: 0.8889
Epoch 18/50
12/12 - 1s - loss: 0.2310 - acc: 0.9028 - val_loss: 0.5842 - val_acc: 0.8333
Epoch 19/50
12/12 - 1s - loss: 0.2983 - acc: 0.8873 - val_loss: 0.3888 - val_acc: 0.8333
Epoch 20/50
12/12 - 1s - loss: 0.3485 - acc: 0.9155 - val_loss: 0.7428 - val_acc: 0.7778
Epoch 21/50
12/12 - 1s - loss: 0.2237 - acc: 0.9028 - val_loss: 0.5091 - val_acc: 0.8333
Epoch 22/50
12/12 - 1s - loss: 0.1417 - acc: 0.9429 - val_loss: 0.2866 - val_acc: 0.9444
Epoch 23/50
12/12 - 1s - loss: 0.1124 - acc: 0.9722 - val_loss: 0.1975 - val_acc: 0.8889
Epoch 24/50
12/12 - 1s - loss: 0.0578 - acc: 0.9718 - val_loss: 0.1934 - val_acc: 0.8889
Epoch 25/50
12/12 - 1s - loss: 0.0319 - acc: 1.0000 - val_loss: 0.1842 - val_acc: 0.9444
Epoch 26/50
12/12 - 1s - loss: 0.0272 - acc: 1.0000 - val_loss: 0.2437 - val_acc: 0.9444
Epoch 27/50
12/12 - 1s - loss: 0.0182 - acc: 1.0000 - val_loss: 0.1499 - val_acc: 0.9444
Epoch 28/50
12/12 - 1s - loss: 0.0042 - acc: 1.0000 - val_loss: 0.0443 - val_acc: 1.0000
Epoch 29/50
12/12 - 1s - loss: 0.0140 - acc: 1.0000 - val_loss: 0.1630 - val_acc: 0.9444
Epoch 30/50
12/12 - 1s - loss: 0.2959 - acc: 0.9296 - val_loss: 0.4106 - val_acc: 0.9444
Epoch 31/50
12/12 - 1s - loss: 0.1117 - acc: 0.9583 - val_loss: 0.5020 - val_acc: 0.7778
Epoch 32/50
12/12 - 1s - loss: 0.1862 - acc: 0.9155 - val_loss: 0.2083 - val_acc: 0.8333
Epoch 33/50
12/12 - 1s - loss: 0.2660 - acc: 0.9437 - val_loss: 0.2789 - val_acc: 0.8889
Epoch 34/50
12/12 - 1s - loss: 0.1294 - acc: 0.9577 - val_loss: 0.1664 - val_acc: 0.8889
Epoch 35/50
12/12 - 1s - loss: 0.0249 - acc: 1.0000 - val_loss: 0.0311 - val_acc: 1.0000
Epoch 36/50
12/12 - 1s - loss: 0.0093 - acc: 1.0000 - val_loss: 0.0409 - val_acc: 1.0000
Epoch 37/50
12/12 - 1s - loss: 0.0324 - acc: 1.0000 - val_loss: 0.1031 - val_acc: 0.9444
Epoch 38/50
12/12 - 1s - loss: 0.0434 - acc: 0.9722 - val_loss: 0.0432 - val_acc: 1.0000
Epoch 39/50
12/12 - 1s - loss: 0.0292 - acc: 0.9857 - val_loss: 0.0669 - val_acc: 1.0000
Epoch 40/50
12/12 - 1s - loss: 0.0844 - acc: 0.9861 - val_loss: 0.6314 - val_acc: 0.7222
Epoch 41/50
12/12 - 1s - loss: 0.0740 - acc: 0.9577 - val_loss: 0.4387 - val_acc: 0.9444
Epoch 42/50
12/12 - 1s - loss: 0.0439 - acc: 0.9859 - val_loss: 0.3860 - val_acc: 0.8889
Epoch 43/50
12/12 - 1s - loss: 0.0084 - acc: 1.0000 - val_loss: 0.2996 - val_acc: 0.8889
Epoch 44/50
12/12 - 1s - loss: 0.0189 - acc: 1.0000 - val_loss: 0.1878 - val_acc: 0.9444
Epoch 45/50
12/12 - 1s - loss: 0.0168 - acc: 0.9861 - val_loss: 0.1696 - val_acc: 0.9444
=-====================== best model
22
24
0.9166666666666666
======================= end save
21
24
0.875
=============train_datagen & val_datagen batch_size=4
Epoch 2/50
12/12 - 1s - loss: 1.3928 - acc: 0.3617 - val_loss: 1.3793 - val_acc: 0.3333
Epoch 3/50
12/12 - 1s - loss: 1.3901 - acc: 0.1702 - val_loss: 1.3784 - val_acc: 0.3333
Epoch 4/50
12/12 - 1s - loss: 1.3753 - acc: 0.2917 - val_loss: 1.3698 - val_acc: 0.3333
Epoch 5/50
12/12 - 1s - loss: 1.3578 - acc: 0.3191 - val_loss: 1.3500 - val_acc: 0.3333
Epoch 6/50
12/12 - 1s - loss: 1.4046 - acc: 0.1875 - val_loss: 1.3687 - val_acc: 0.3333
Epoch 7/50
12/12 - 1s - loss: 1.3488 - acc: 0.3958 - val_loss: 1.3558 - val_acc: 0.5833
Epoch 8/50
12/12 - 1s - loss: 1.3282 - acc: 0.2553 - val_loss: 1.3121 - val_acc: 0.5000
Epoch 9/50
12/12 - 1s - loss: 1.2393 - acc: 0.5000 - val_loss: 1.1969 - val_acc: 0.4167
Epoch 10/50
12/12 - 1s - loss: 1.1807 - acc: 0.4681 - val_loss: 1.2825 - val_acc: 0.3333
Epoch 11/50
12/12 - 1s - loss: 1.1404 - acc: 0.4583 - val_loss: 1.1595 - val_acc: 0.4167
Epoch 12/50
12/12 - 1s - loss: 0.7377 - acc: 0.7660 - val_loss: 1.1961 - val_acc: 0.4167
Epoch 13/50
12/12 - 1s - loss: 0.9723 - acc: 0.6170 - val_loss: 1.1051 - val_acc: 0.5000
Epoch 14/50
12/12 - 1s - loss: 0.8133 - acc: 0.6458 - val_loss: 1.1023 - val_acc: 0.6667
Epoch 15/50
12/12 - 1s - loss: 0.6107 - acc: 0.7872 - val_loss: 1.0351 - val_acc: 0.6667
Epoch 16/50
12/12 - 1s - loss: 0.7098 - acc: 0.7500 - val_loss: 0.9534 - val_acc: 0.6667
Epoch 17/50
12/12 - 1s - loss: 0.4934 - acc: 0.8085 - val_loss: 0.7624 - val_acc: 0.8333
Epoch 18/50
12/12 - 1s - loss: 0.3775 - acc: 0.8750 - val_loss: 1.0094 - val_acc: 0.5833
Epoch 19/50
12/12 - 1s - loss: 0.3040 - acc: 0.8958 - val_loss: 0.7662 - val_acc: 0.5833
Epoch 20/50
12/12 - 1s - loss: 0.4360 - acc: 0.8085 - val_loss: 0.9694 - val_acc: 0.6667
Epoch 21/50
12/12 - 1s - loss: 0.5942 - acc: 0.7917 - val_loss: 1.2980 - val_acc: 0.4167
Epoch 22/50
12/12 - 1s - loss: 0.3473 - acc: 0.8511 - val_loss: 1.1692 - val_acc: 0.6667
Epoch 23/50
12/12 - 1s - loss: 0.4162 - acc: 0.8958 - val_loss: 0.9021 - val_acc: 0.6667
Epoch 24/50
12/12 - 1s - loss: 0.2644 - acc: 0.9362 - val_loss: 0.8402 - val_acc: 0.7500
Epoch 25/50
12/12 - 1s - loss: 0.2067 - acc: 0.8723 - val_loss: 1.0619 - val_acc: 0.5833
Epoch 26/50
12/12 - 1s - loss: 0.1780 - acc: 0.9375 - val_loss: 1.1045 - val_acc: 0.7500
Epoch 27/50
12/12 - 1s - loss: 0.0893 - acc: 0.9787 - val_loss: 1.0078 - val_acc: 0.7500
=-====================== best model save(17/50)
[True, True, True, False, True, True, True, False, True, True, True, True, True, True, True, True, True, True, True, True, True, False, True, True]
21
24
0.875
======================= end save
19
24
0.7916666666666666
=============train_datagen & val_datagen batch_size=2
12/12 - 0s - loss: 1.3823 - acc: 0.4348 - val_loss: 1.3997 - val_acc: 0.1667
Epoch 3/50
12/12 - 0s - loss: 1.3769 - acc: 0.3750 - val_loss: 1.3975 - val_acc: 0.1667
Epoch 4/50
12/12 - 0s - loss: 1.3675 - acc: 0.3333 - val_loss: 1.4078 - val_acc: 0.1667
Epoch 5/50
12/12 - 0s - loss: 1.3807 - acc: 0.4167 - val_loss: 1.4257 - val_acc: 0.1667
Epoch 6/50
12/12 - 0s - loss: 1.4356 - acc: 0.2500 - val_loss: 1.4040 - val_acc: 0.1667
Epoch 7/50
12/12 - 0s - loss: 1.4038 - acc: 0.3043 - val_loss: 1.3947 - val_acc: 0.1667
Epoch 8/50
12/12 - 0s - loss: 1.4092 - acc: 0.2083 - val_loss: 1.3911 - val_acc: 0.1667
Epoch 9/50
12/12 - 0s - loss: 1.3754 - acc: 0.4348 - val_loss: 1.3929 - val_acc: 0.1667
Epoch 10/50
12/12 - 0s - loss: 1.3995 - acc: 0.1667 - val_loss: 1.3959 - val_acc: 0.1667
Epoch 11/50
12/12 - 0s - loss: 1.3888 - acc: 0.3333 - val_loss: 1.3947 - val_acc: 0.1667
Epoch 12/50
12/12 - 0s - loss: 1.3868 - acc: 0.3333 - val_loss: 1.3829 - val_acc: 0.1667
Epoch 13/50
12/12 - 0s - loss: 1.3932 - acc: 0.1667 - val_loss: 1.3865 - val_acc: 0.3333
Epoch 14/50
12/12 - 0s - loss: 1.3873 - acc: 0.2174 - val_loss: 1.3809 - val_acc: 0.1667
Epoch 15/50
12/12 - 0s - loss: 1.3967 - acc: 0.1667 - val_loss: 1.3839 - val_acc: 0.1667
Epoch 16/50
12/12 - 0s - loss: 1.3866 - acc: 0.2917 - val_loss: 1.3856 - val_acc: 0.1667
Epoch 17/50
12/12 - 0s - loss: 1.3895 - acc: 0.2917 - val_loss: 1.3885 - val_acc: 0.1667
Epoch 18/50
12/12 - 0s - loss: 1.3070 - acc: 0.5000 - val_loss: 1.3898 - val_acc: 0.1667
Epoch 19/50
12/12 - 0s - loss: 1.3464 - acc: 0.4348 - val_loss: 1.3557 - val_acc: 0.1667
Epoch 20/50
12/12 - 0s - loss: 1.5903 - acc: 0.2917 - val_loss: 1.3877 - val_acc: 0.1667
Epoch 21/50
12/12 - 0s - loss: 1.3882 - acc: 0.3478 - val_loss: 1.3939 - val_acc: 0.1667
Epoch 22/50
12/12 - 0s - loss: 1.3913 - acc: 0.2917 - val_loss: 1.3986 - val_acc: 0.1667
Epoch 23/50
12/12 - 0s - loss: 1.3882 - acc: 0.1667 - val_loss: 1.4000 - val_acc: 0.1667
Epoch 24/50
12/12 - 0s - loss: 1.3882 - acc: 0.2083 - val_loss: 1.3968 - val_acc: 0.1667
Epoch 25/50
12/12 - 0s - loss: 1.3870 - acc: 0.2609 - val_loss: 1.3828 - val_acc: 0.1667
Epoch 26/50
12/12 - 0s - loss: 1.3983 - acc: 0.1250 - val_loss: 1.3809 - val_acc: 0.1667
Epoch 27/50
12/12 - 0s - loss: 1.3973 - acc: 0.1667 - val_loss: 1.3941 - val_acc: 0.1667
Epoch 28/50
12/12 - 0s - loss: 1.3925 - acc: 0.2083 - val_loss: 1.3964 - val_acc: 0.1667
Epoch 29/50
12/12 - 0s - loss: 1.3991 - acc: 0.2083 - val_loss: 1.3892 - val_acc: 0.1667
=-====================== best model
[True, True, True, False, True, True, True, False, True, True, True, True, True, True, True, True, True, True, True, True, True, False, True, True]
6
24
0.25
======================= end save
6
24
0.25
=============train_datagen & val_datagen batch_size=2
Epoch 1/50
"Palette images with Transparency expressed in bytes should be "
12/12 - 2s - loss: 1.6791 - acc: 0.3333 - val_loss: 1.3767 - val_acc: 0.1667
Epoch 2/50
12/12 - 0s - loss: 1.4143 - acc: 0.3043 - val_loss: 1.4143 - val_acc: 0.1667
Epoch 3/50
12/12 - 0s - loss: 1.4167 - acc: 0.2083 - val_loss: 1.4089 - val_acc: 0.1667
Epoch 4/50
12/12 - 0s - loss: 1.4170 - acc: 0.2917 - val_loss: 1.3932 - val_acc: 0.1667
Epoch 5/50
12/12 - 0s - loss: 1.3849 - acc: 0.3478 - val_loss: 1.3893 - val_acc: 0.1667
Epoch 6/50
12/12 - 0s - loss: 1.3777 - acc: 0.2917 - val_loss: 1.3910 - val_acc: 0.1667
Epoch 7/50
12/12 - 0s - loss: 1.3930 - acc: 0.2917 - val_loss: 1.3835 - val_acc: 0.1667
Epoch 8/50
12/12 - 0s - loss: 1.3928 - acc: 0.2083 - val_loss: 1.3859 - val_acc: 0.1667
Epoch 9/50
12/12 - 0s - loss: 1.3880 - acc: 0.2917 - val_loss: 1.3813 - val_acc: 0.1667
Epoch 10/50
12/12 - 0s - loss: 1.3379 - acc: 0.2917 - val_loss: 1.3570 - val_acc: 0.1667
Epoch 11/50
12/12 - 0s - loss: 1.4118 - acc: 0.3913 - val_loss: 1.3743 - val_acc: 0.3333
Epoch 12/50
12/12 - 0s - loss: 1.3666 - acc: 0.3333 - val_loss: 1.3321 - val_acc: 0.6667
Epoch 13/50
12/12 - 0s - loss: 1.2393 - acc: 0.5000 - val_loss: 1.1981 - val_acc: 0.1667
Epoch 14/50
12/12 - 0s - loss: 1.4492 - acc: 0.5417 - val_loss: 1.4039 - val_acc: 0.1667
Epoch 15/50
12/12 - 0s - loss: 1.3842 - acc: 0.3913 - val_loss: 1.3990 - val_acc: 0.1667
Epoch 16/50
12/12 - 0s - loss: 1.2615 - acc: 0.5833 - val_loss: 1.3070 - val_acc: 0.3333
Epoch 17/50
12/12 - 0s - loss: 1.1195 - acc: 0.5000 - val_loss: 1.1786 - val_acc: 0.6667
Epoch 18/50
12/12 - 0s - loss: 1.1330 - acc: 0.4583 - val_loss: 1.1987 - val_acc: 0.8333
Epoch 19/50
12/12 - 0s - loss: 1.0055 - acc: 0.4783 - val_loss: 1.2311 - val_acc: 0.6667
Epoch 20/50
12/12 - 0s - loss: 1.0824 - acc: 0.7500 - val_loss: 1.0195 - val_acc: 0.6667
Epoch 21/50
12/12 - 0s - loss: 0.8234 - acc: 0.6522 - val_loss: 0.8360 - val_acc: 1.0000
Epoch 22/50
12/12 - 0s - loss: 0.8560 - acc: 0.6667 - val_loss: 0.9709 - val_acc: 0.5000
Epoch 23/50
12/12 - 0s - loss: 0.9123 - acc: 0.6250 - val_loss: 1.0914 - val_acc: 0.5000
Epoch 24/50
12/12 - 0s - loss: 0.7036 - acc: 0.6250 - val_loss: 0.9543 - val_acc: 0.5000
Epoch 25/50
12/12 - 0s - loss: 0.8375 - acc: 0.6522 - val_loss: 0.9577 - val_acc: 0.3333
Epoch 26/50
12/12 - 0s - loss: 0.7323 - acc: 0.6667 - val_loss: 1.2937 - val_acc: 0.5000
Epoch 27/50
12/12 - 0s - loss: 0.9130 - acc: 0.7500 - val_loss: 0.9084 - val_acc: 0.6667
Epoch 28/50
12/12 - 0s - loss: 1.1023 - acc: 0.5000 - val_loss: 1.1919 - val_acc: 0.6667
Epoch 29/50
12/12 - 0s - loss: 0.8694 - acc: 0.6250 - val_loss: 0.8986 - val_acc: 0.6667
Epoch 30/50
12/12 - 0s - loss: 0.5457 - acc: 0.7826 - val_loss: 0.7224 - val_acc: 0.8333
Epoch 31/50
12/12 - 0s - loss: 0.6862 - acc: 0.7500 - val_loss: 1.4066 - val_acc: 0.3333
Epoch 32/50
12/12 - 0s - loss: 0.5417 - acc: 0.7917 - val_loss: 1.6421 - val_acc: 0.1667
Epoch 33/50
12/12 - 0s - loss: 0.6835 - acc: 0.6667 - val_loss: 0.9678 - val_acc: 0.5000
Epoch 34/50
12/12 - 0s - loss: 0.6058 - acc: 0.7083 - val_loss: 0.8739 - val_acc: 0.6667
Epoch 35/50
12/12 - 0s - loss: 0.5164 - acc: 0.7500 - val_loss: 0.9773 - val_acc: 0.5000
Epoch 36/50
12/12 - 0s - loss: 0.9135 - acc: 0.6957 - val_loss: 0.7827 - val_acc: 0.6667
Epoch 37/50
12/12 - 0s - loss: 0.6138 - acc: 0.7917 - val_loss: 0.9902 - val_acc: 0.3333
Epoch 38/50
12/12 - 0s - loss: 0.3973 - acc: 0.8696 - val_loss: 0.9536 - val_acc: 0.3333
Epoch 39/50
12/12 - 0s - loss: 0.4686 - acc: 0.7917 - val_loss: 0.7066 - val_acc: 0.8333
Epoch 40/50
12/12 - 0s - loss: 0.4339 - acc: 0.8333 - val_loss: 0.7634 - val_acc: 0.6667
Epoch 41/50
12/12 - 0s - loss: 0.4540 - acc: 0.7917 - val_loss: 0.8571 - val_acc: 0.8333
Epoch 42/50
12/12 - 0s - loss: 0.2571 - acc: 0.9167 - val_loss: 0.9269 - val_acc: 0.6667
Epoch 43/50
12/12 - 0s - loss: 0.6589 - acc: 0.7917 - val_loss: 0.9175 - val_acc: 0.5000
Epoch 44/50
12/12 - 0s - loss: 0.2481 - acc: 0.9130 - val_loss: 1.0063 - val_acc: 0.3333
Epoch 45/50
12/12 - 0s - loss: 0.3807 - acc: 0.8696 - val_loss: 0.8532 - val_acc: 0.8333
Epoch 46/50
12/12 - 0s - loss: 0.1264 - acc: 1.0000 - val_loss: 0.7736 - val_acc: 0.8333
Epoch 47/50
12/12 - 0s - loss: 0.5784 - acc: 0.7917 - val_loss: 0.7685 - val_acc: 0.8333
Epoch 48/50
12/12 - 0s - loss: 0.2773 - acc: 0.9167 - val_loss: 0.7550 - val_acc: 0.6667
Epoch 49/50
12/12 - 0s - loss: 0.1175 - acc: 0.9583 - val_loss: 0.7300 - val_acc: 0.8333
=-====================== best model
[True, True, True, False, True, True, True, False, True, True, True, True, True, True, True, True, True, True, True, True, True, False, True, True]
18
24
0.75
======================= end save
18
24
0.75
=============train_datagen & val_datagen batch_size=2
Epoch 1/50
"Palette images with Transparency expressed in bytes should be "
12/12 - 2s - loss: 1.7255 - acc: 0.2500 - val_loss: 1.3907 - val_acc: 0.3333
Epoch 2/50
12/12 - 0s - loss: 1.4694 - acc: 0.1250 - val_loss: 1.3921 - val_acc: 0.3333
Epoch 3/50
12/12 - 0s - loss: 1.3893 - acc: 0.3043 - val_loss: 1.3805 - val_acc: 0.3333
Epoch 4/50
12/12 - 0s - loss: 1.3923 - acc: 0.2500 - val_loss: 1.3763 - val_acc: 0.3333
Epoch 5/50
12/12 - 0s - loss: 1.3959 - acc: 0.2500 - val_loss: 1.3770 - val_acc: 0.3333
Epoch 6/50
12/12 - 0s - loss: 1.3912 - acc: 0.2083 - val_loss: 1.3813 - val_acc: 0.3333
Epoch 7/50
12/12 - 0s - loss: 1.3856 - acc: 0.2500 - val_loss: 1.3852 - val_acc: 0.3333
Epoch 8/50
12/12 - 0s - loss: 1.3997 - acc: 0.2174 - val_loss: 1.3775 - val_acc: 0.3333
Epoch 9/50
12/12 - 0s - loss: 1.3811 - acc: 0.2500 - val_loss: 1.3796 - val_acc: 0.3333
Epoch 10/50
12/12 - 0s - loss: 1.3649 - acc: 0.1667 - val_loss: 1.3493 - val_acc: 0.6667
Epoch 11/50
12/12 - 0s - loss: 1.4336 - acc: 0.2917 - val_loss: 1.3710 - val_acc: 0.3333
Epoch 12/50
12/12 - 0s - loss: 1.3992 - acc: 0.1304 - val_loss: 1.3943 - val_acc: 0.3333
Epoch 13/50
12/12 - 0s - loss: 1.3778 - acc: 0.3043 - val_loss: 1.3939 - val_acc: 0.3333
Epoch 14/50
12/12 - 0s - loss: 1.3803 - acc: 0.4583 - val_loss: 1.3891 - val_acc: 0.3333
Epoch 15/50
12/12 - 0s - loss: 1.3327 - acc: 0.2500 - val_loss: 1.4245 - val_acc: 0.5000
Epoch 16/50
12/12 - 0s - loss: 1.5164 - acc: 0.1667 - val_loss: 1.3931 - val_acc: 0.3333
Epoch 17/50
12/12 - 0s - loss: 1.4048 - acc: 0.2174 - val_loss: 1.3877 - val_acc: 0.3333
Epoch 18/50
12/12 - 0s - loss: 1.3925 - acc: 0.2917 - val_loss: 1.3897 - val_acc: 0.3333
Epoch 19/50
12/12 - 0s - loss: 1.3962 - acc: 0.1667 - val_loss: 1.3906 - val_acc: 0.3333
Epoch 20/50
12/12 - 0s - loss: 1.3874 - acc: 0.2917 - val_loss: 1.3932 - val_acc: 0.3333
=-====================== best model
[True, True, True, False, True, True, True, False, True, True, True, True, True, True, True, True, True, True, True, True, True, False, True, True]
11
24
0.4583333333333333
======================= end save
0.25