-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluation.py
142 lines (114 loc) · 3.67 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import traceback
import cv2
import numpy as np
import pandas as pd
import tensorflow as tf
from keras.models import load_model
from keras.utils import CustomObjectScope
from tqdm import tqdm
from src.metrics import (
accuracy_score,
calc_loss,
dice_coef,
eval_dice_coef,
eval_iou,
f1_score,
precision_score,
recall_score,
)
from src.metrics import (
iou as model_iou,
)
from src.utils import createDir, getMaskLen, loadData, saveResults
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
H = 256
W = 256
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
def evaluator(eval_dir: str) -> None:
"""Function to evaluate the trained model.
Args:
eval_dir (str): Path to evaluation directory.
Raises:
OSError: In case the provided Evaluation Path does not exist.
"""
np.random.seed(42)
tf.random.set_seed(42)
if not os.path.exists(eval_dir):
raise OSError("Path does not exist.", eval_dir)
createDir("eval_results")
with CustomObjectScope({"iou": model_iou, "dice_coef": dice_coef, "dice_loss": calc_loss}):
model = load_model("./output/model.h5")
try:
x_test, y_test = loadData(eval_dir)
except Exception as _:
traceback.print_exc()
exit("No input available.")
print(f"Test:\nImages: {len(x_test)}\tMasks: {len(y_test)}")
SCORE = []
for x, y in tqdm(zip(x_test, y_test), total=len(x_test)):
name = os.path.split(x)[1].split(".")[0]
image = cv2.imread(x, cv2.IMREAD_COLOR)
image_resized = cv2.resize(image, dsize=(256, 256))
x = image_resized / 255.0
x -= MEAN
x /= STD
x = np.expand_dims(x, axis=0)
mask = cv2.imread(y, cv2.IMREAD_GRAYSCALE)
mask_resized = cv2.resize(mask, dsize=(256, 256))
y_pred = model.predict(x)[0]
y_pred = np.squeeze(y_pred, axis=-1)
y_pred = (y_pred > 0.5).astype(np.int32)
diagonal_len, horizontal_len, vertical_len = getMaskLen(y_pred)
save_img_path = f"./eval_results/{name}.png"
saveResults(image_resized, mask_resized, y_pred, save_img_path)
mask_resized = mask_resized.flatten()
y_pred = y_pred.flatten()
acc_scr = accuracy_score(y_pred=y_pred, y_true=mask_resized)
f1_scr = f1_score(y_pred=y_pred, y_true=mask_resized)
recall_val = recall_score(y_pred=y_pred, y_true=mask_resized)
precison_val = precision_score(y_pred=y_pred, y_true=mask_resized)
iou = eval_iou(y_pred=y_pred, y_true=mask_resized)
dice = eval_dice_coef(y_pred=y_pred, y_true=mask_resized)
SCORE.append(
[
name,
acc_scr,
f1_scr,
recall_val,
precison_val,
iou,
dice,
diagonal_len,
horizontal_len,
vertical_len,
]
)
score = [s[1:7] for s in SCORE]
score = np.mean(score, axis=0)
print(f"Accuracy: {score[0]:0.5f}")
print(f"F1-Score: {score[1]:0.5f}")
print(f"Recall: {score[2]:0.5f}")
print(f"Precison: {score[3]:0.5f}")
print(f"IoU: {score[4]:0.5f}")
print(f"Dice Coefficient: {score[5]:0.5f}")
df = pd.DataFrame(
SCORE,
columns=[
"Image",
"Accuracy",
"F1",
"Recall",
"Precison",
"IoU",
"Dice Coeff",
"Diagonal Length (px)",
"Horizontal Length (px)",
"Vertical Length (px)",
],
)
df.to_csv("./eval_results/Evaluation_Score.csv")
return
if __name__ == "__main__":
evaluator(eval_dir="./eval_data")