-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathens_eval.py
159 lines (128 loc) · 4.41 KB
/
ens_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import click
import cv2
import numpy as np
import pandas as pd
from tqdm import tqdm
from src.metrics import (
accuracy_score,
eval_dice_coef,
eval_iou,
f1_score,
precision_score,
recall_score,
)
from src.model import createModel
from src.utils import getMaskLen, loadData, saveResults
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
@click.command()
@click.option(
"--data-dir",
type=str,
prompt="Evaluation Data Directory",
required=True,
help="Directory containing data for evaluation",
)
@click.option(
"--weights-dir",
type=str,
default="./tmp/weights",
help="Directory containing data for evaluation",
)
def ens_eval(data_dir: str, weights_dir: str) -> None:
"""Evaluation script to test models trained in ensemble mode. Find results in 'ens_results' directory.
Args:
data_dir (str): Directory containing data for evaluation
weights_dir (str): Directory containing ensemble model weights.
Raises:
OSError: In the event that weights are not found.
"""
os.makedirs("ens_results", exist_ok=True)
all_files = os.listdir(weights_dir)
model_files = [file for file in all_files if file.startswith("model_") and file.endswith(".h5")]
if not len(model_files):
raise OSError(f"No weights in weights directory, {weights_dir}")
x_test, y_test = loadData(data_dir)
preds = []
click.secho(f"\nNo. of Models: {len(model_files)}\n", fg="blue")
for m in model_files:
model = createModel("ResNet50")
model.load_weights(os.path.join(weights_dir, m))
model_name = m.split(".")[0]
model_preds = []
click.secho(f"\nEval Images: {len(x_test)}\nEval Masks: {len(y_test)}\n", fg="blue")
click.secho(f"Testing {model_name}...\n", fg="green")
for x in tqdm(x_test, total=len(x_test)):
image = cv2.imread(x, cv2.IMREAD_COLOR)
image_resized = cv2.resize(image, dsize=(256, 256))
x = image_resized / 255.0
x -= MEAN
x /= STD
x = np.expand_dims(x, axis=0)
y_pred = model.predict(x)[0]
y_pred = np.squeeze(y_pred, axis=-1)
model_preds.append(y_pred)
preds.append(model_preds)
preds = np.array(preds)
avg_result = np.mean(preds, axis=0)
avg_result_binary = (avg_result > 0.5).astype(np.int32)
SCORE = []
for x, y, pred in zip(x_test, y_test, avg_result_binary):
name = os.path.split(x)[1].split(".")[0]
image = cv2.imread(x, cv2.IMREAD_COLOR)
image_resized = cv2.resize(image, dsize=(256, 256))
mask = cv2.imread(y, cv2.IMREAD_GRAYSCALE)
mask_resized = cv2.resize(mask, dsize=(256, 256))
diagonal_len, horizontal_len, vertical_len = getMaskLen(pred)
save_img_path = f"./ens_results/{name}.png"
saveResults(image_resized, mask_resized, pred, save_img_path)
mask_resized = mask_resized.flatten()
pred = pred.flatten()
acc_scr = accuracy_score(y_pred=pred, y_true=mask_resized)
f1_scr = f1_score(y_pred=pred, y_true=mask_resized)
recall_val = recall_score(y_pred=pred, y_true=mask_resized)
precison_val = precision_score(y_pred=pred, y_true=mask_resized)
iou = eval_iou(y_pred=pred, y_true=mask_resized)
dice = eval_dice_coef(y_pred=pred, y_true=mask_resized)
SCORE.append(
[
name,
acc_scr,
f1_scr,
recall_val,
precison_val,
iou,
dice,
diagonal_len,
horizontal_len,
vertical_len,
]
)
score = [s[1:7] for s in SCORE]
score = np.mean(score, axis=0)
print(f"Accuracy: {score[0]:0.5f}")
print(f"F1-Score: {score[1]:0.5f}")
print(f"Recall: {score[2]:0.5f}")
print(f"Precison: {score[3]:0.5f}")
print(f"IoU: {score[4]:0.5f}")
print(f"Dice Coefficient: {score[5]:0.5f}")
df = pd.DataFrame(
SCORE,
columns=[
"Image",
"Accuracy",
"F1",
"Recall",
"Precison",
"IoU",
"Dice Coeff",
"Diagonal Length (px)",
"Horizontal Length (px)",
"Vertical Length (px)",
],
)
df.to_csv("./ens_results/Evaluation_Score.csv")
return
if __name__ == "__main__":
ens_eval()