-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathhelper.py
380 lines (281 loc) · 9.96 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 31 16:54:47 2018
@author: bking
"""
import smtplib
from email.mime.text import MIMEText
import numpy as np
from multiprocessing import Pool
import pandas as pd
def sendGmail(to,body,subject):
gmail_user = '[email protected]'
gmail_password = 'Inevergiveup1992'
fromx = '[email protected]'
# to = '[email protected]'
msg = MIMEText(body)
msg['Subject'] = subject
msg['From'] = fromx
msg['To'] = to
try:
server = smtplib.SMTP_SSL('smtp.gmail.com', 465)
server.ehlo()
server.login(gmail_user, gmail_password)
server.sendmail(fromx, to, msg.as_string())
server.close()
print ('Email sent!')
except:
print ('Something went wrong...')
def alertFinishJob(message):
subject="Finished"
sendGmail('[email protected]',message,subject=subject)
def alertError(message):
subject="Failed"
sendGmail('[email protected]',message,subject=subject)
def computeCentroid(vector_list):
"""
Description:
Usage:
"""
size = len(vector_list)
unfold_vector = [item for sublist in vector_list for item in sublist]
series = pd.Series(unfold_vector)
freq = series.value_counts()
centroid = freq / size
return dict(centroid)
def cosine_sim_song(vector):
"""
Description: Compute the cosine similarity between 1 centroid and 1 vector
Usage:
"""
centroid = vector[0]
compare_vector = vector[1]
set_vector1 = set(centroid)
set_vector2 = set(compare_vector)
intersect = set_vector1.intersection(set_vector2)
value = [centroid.get(i) for i in intersect]
A = sum(value)
length_vector1 = np.sqrt(sum(np.square(list(centroid.values()))))
length_vector2 = np.sqrt(len(compare_vector))
B = length_vector1 * length_vector2
cosine_sime = A / B
return cosine_sime.round(2)
#def cosine_sim(vector1,vector2):
# """
# Description: Compute the cosine similarity between 2 vectors
# Usage:
#
# """
#
#
# set_vector1 = set(vector1)
# set_vector2 = set(vector2)
#
# intersect = set_vector1.intersection(set_vector2)
# value = [centroid.get(i) for i in intersect]
# A = sum(value)
#
# length_vector1 = np.sqrt(sum(np.square(list(centroid.values()))))
#
# length_vector2 = np.sqrt(len(compare_vector))
#
# B = length_vector1 * length_vector2
#
# cosine_sime = A / B
#
# return cosine_sime.round(2)
def findKRelevant_song(curr_song_list,df,K):
"""
Description: Find K most relevent objects of centroid
Usage:
- curr_song_list = a list current songs in playlists
- tid: int
- df: Song-Playlist matrix column = [pid,pos], index = [tid]
- K: int
Return:
list of tid
"""
# Compute centroid of tid list
curr_pid_vector = list(df.loc[curr_song_list].pid)
centroid = computeCentroid(curr_pid_vector)
# Filter out songs that already in the list
other_song_vector = df.loc[~(df.index.isin(curr_song_list))].pid
tid_list = list(other_song_vector.index)
sim = []
for v in other_song_vector.values:
sim.append(cosine_sim_song([centroid,v]))
topK = [x for _,x in sorted(zip(sim,tid_list),reverse=True)]
return topK[:K]
#def cosine_sim(vector1,vector2):
def cosine_sim(vector):
"""
Description: Compute the cosine similarity between 2 vectors with multiprocessing
Usage:
"""
vector1 = vector[0]
vector2 = vector[1]
# print("length: {}".format(len(vector1)))
set_vector1 = set(vector1)
set_vector2 = set(vector2)
intersect = len(set_vector1.intersection(set_vector2))
length_vector1 = np.sqrt(len(set_vector1))
length_vector2 = np.sqrt(len(set_vector2))
cosine_sim = intersect / (length_vector1 * length_vector2)
return cosine_sim.round(2)
def findKRelevant(pid,df,K,proc):
"""
Description: Find K most relevent objects, with multiprocessing
Usage:
- pid: int
- df: column = [tid,pos], index = [pid]
- K: int
- proc: int, number of processing
"""
pid_list = list(df.index.values)
length = len(pid_list)
p1 = [pid]*(length-1)
p2 = pid_list.copy()
p2.remove(pid)
vector1 = list(df.tid.loc[p1])
vector2 = list(df.tid.loc[p2])
with Pool(proc) as p:
sim = p.map(cosine_sim, zip(vector1,vector2))
topK = [x for _,x in sorted(zip(sim,p2),reverse=True)]
return topK[:K]
def findKRelevant_simple(pid,df,K):
"""
Description: Find K most relevent objects, with multiprocessing
Usage:
- pid: int
- df: column = [tid,pos], index = [pid]
- K: int
- proc: int, number of processing
"""
pid_list = list(df.index.values)
length = len(pid_list)
p1 = [pid]*(length-1)
p2 = pid_list.copy()
p2.remove(pid)
vector1 = list(df.tid.loc[p1])
vector2 = list(df.tid.loc[p2])
sim = []
for i in range(length-1):
v1 = vector1[i]
v2 = vector2[i]
sim.append(cosine_sim([v1,v2]))
# with Pool(proc) as p:
# sim = p.map(cosine_sim, zip(vector1,vector2))
topK = [x for _,x in sorted(zip(sim,p2),reverse=True)]
return topK[:K]
# Function forSpark
def centroid(model,data,sc,vector_size):
if len(data) == 0:
print("All data points are not in vocab")
print(vector_size)
from pyspark.mllib.linalg import Vectors
return Vectors.dense(Vectors.zeros(vector_size))
vectorize_list = list(map(model.transform, data))
centroid = sc.parallelize(vectorize_list).reduce(lambda x,y: x+y)
centroid = centroid / len(vectorize_list)
return centroid
# Function forSpark
def findK_relevant(model,K,data_list,sc,vector_size):
# Find the centroid of data_list
vec = centroid(model,data_list,sc,vector_size)
# Define empty list
topK = []
# Define multiplity constant
constant = 0
# Loop until get all K element
while(1):
# print(constant)
# Get nearest vectors
syms = model.findSynonyms(vec, int(K*(1.1 + constant / 10)))
# Find top K
topK = [s[0] for s in syms][1:]
# Filter out duplication
topK = [value for value in topK if value not in data_list]
if (len(topK) >= K):
break
if (round(constant) == 10):
break
constant += 2
return topK[:K]
class my_evaluation:
# df_predictions = pd.DataFrame()
# df_truth = pd.DataFrame()
def __init__(self,df_predictions,df_truth):
self.df_predictions = df_predictions
self.df_truth = df_truth
def aggregate_metric(self):
'''
Some description
predictions:
truth:
'''
df_predictions = self.df_predictions
df_truth = self.df_truth
r_precision_list = []
ndcg_list = []
song_clicks_list =[]
# pid_list = df_truth.pid.unique()
pid_list = df_truth.index.unique()
# Iterate through each pid to get value of each metric
for pid in pid_list:
# r_precision
# Filter out data with specific pid
predictions = df_predictions.loc[pid].tid
truth = df_truth.loc[pid].tid
# Get n_track
# n_track = len(truth)
# truth = truth.tid
# predictions = predictions.tid
r_precision_list.append(self.r_precision(predictions,truth,500))
ndcg_list.append(self.ndcg(predictions,truth,500))
song_clicks_list.append(self.song_clicks(predictions,truth,500))
r_precision_value = np.array([r_precision_list]).mean()
ndcg_value = np.array([ndcg_list]).mean()
song_clicks_value = np.array([song_clicks_list]).mean()
return {'r-precision':r_precision_value,'ndcg':ndcg_value, 'song clicks':song_clicks_value}
def r_precision(self,predictions,truth,n_track):
'''
some description
predictions:
truth:
'''
# Calculate metric
truth_set = set(truth)
prediction_set = set(predictions[:n_track])
intersect = prediction_set.intersection(truth_set)
return float(len(intersect)) / len(truth_set)
def ndcg(self,predictions,truth,n_tracks):
'''
some description
predictions:
truth:
'''
predictions = list(predictions[:n_tracks])
truth = list(truth)
# Computes an ordered vector of 1.0 and 0.0
# Sum ( rel / log2 (i+1) )
score = [float(element in truth) for element in predictions]
dcg = np.sum(score / np.log2(1 + np.arange(1, len(score) + 1)))
ones = np.ones([1,len(truth)])
idcg = np.sum(ones / np.log2(1 + np.arange(1, len(truth) + 1)))
return (dcg / idcg)
def song_clicks(self,predictions,truth,n_tracks):
'''
Minumum clicks until a relevant track is found
The Lower, the better
predictions:
truth:
'''
predictions = predictions[:n_tracks]
# Calculate metric
i = set(predictions).intersection(set(truth))
for index, t in enumerate(predictions):
for track in i:
if t == track:
return float(int(index / 10))
return float(n_tracks / 10.0 + 1)