-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemp.py
344 lines (268 loc) · 11 KB
/
temp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import json
import h5py
from shutil import copyfile
import numpy as np
import time
dst = "./my_output/"
src = "./flickr30k/"
LDA_dir = "./tuti/topics/"
prepared_files_dir = "./tuti/"
scores_dir = "./scores/"
analysis_score = []
OUTPUT = []
OUTPUT2 = []
def compute_cosine_similarity(base_vector, target_vector):
"""Compute the cosine similarity between two vectors based on the angular cosine distance
return range -1 to 1, where 1 means two vectors are identical,
-1 means reverse!*!, 0 means vectors are orthogonal
where cosine(A,B) = dot(A,B) / ( || A || * || B || ) """
np.seterr(all='print')
cosine_similarity = 0
try:
base_vector = np.longdouble(base_vector)
target_vector = np.longdouble(target_vector)
vector_dot_products = np.dot(base_vector, target_vector)
vector_norms = np.linalg.norm(base_vector) * np.linalg.norm(target_vector)
cosine_similarity = np.divide(vector_dot_products, vector_norms)
if vector_norms == 0.0:
print
'Error in vec in compute_cosine_similarity'
print
target_vector
except:
print("error")
print(base_vector)
print(target_vector)
return 0
return cosine_similarity + 1
def remove_outliers(candidates, column_indice=1, epsilon=0.15, number_of_nearest_neighbours=10):
""" Remove outliers adaptively based on distance and a treshold value """
remaining = len(candidates)
visual_distance_scores = []
try:
for i in range(len(candidates)):
visual_distance_scores.append(float(candidates[i][column_indice]))
except Exception:
print("Error in remove_outliers function")
print()
dist_min = min(visual_distance_scores)
dist_max = max(visual_distance_scores)
ind2remove = []
# reverse the list, so that we can start removing from the furthest score
candidates.sort(key=lambda c: c[column_indice], reverse=True)
for i in range(len(candidates)):
if float(candidates[i][column_indice]) > (1 + epsilon) * dist_min:
if remaining > number_of_nearest_neighbours: # Make sure we have at least some items left.
ind2remove.append(i)
remaining -= 1
elif remaining == number_of_nearest_neighbours:
break
# candidates = np.delete(candidates, idx, axis=0) # remove outliers
candidates = [x for i, x in enumerate(candidates) if i not in ind2remove]
# candidates = candidates.tolist()
candidates.reverse()
# print(candidates)
return candidates, dist_min, dist_max
#####load lda_topics#####
lda = h5py.File(LDA_dir + "lda_topics.h5", 'r+')
LDA_test_gt = list(lda["test_gt"])
LDA_test_pred = list(lda["test_pred"])
LDA_val_gt = list(lda["val_gt"])
LDA_val_pred = list(lda["val_pred"])
LDA_train_gt = list(lda["train_gt"])
LDA_train_pred = list(lda["train_pred"])
LDA_all_gt = LDA_train_gt + LDA_val_gt
#####load Image IDs####
# test img
with open(prepared_files_dir + "captions_test.json") as image_ids:
test_image_ids = json.load(image_ids) # 1000
test_img_list = list(test_image_ids["image_ids"])
# train img
with open(prepared_files_dir + "captions_train.json") as image_ids:
train_image_ids = json.load(image_ids) # 1000
train_img_list = list(train_image_ids["image_ids"])
# val img
with open(prepared_files_dir + "captions_val.json") as image_ids:
val_image_ids = json.load(image_ids) # 1000
val_img_list = list(val_image_ids["image_ids"])
all_img_list = train_img_list + val_img_list
# load regions CNN features
region_features = h5py.File(prepared_files_dir + "features_30res.h5", 'r+') # test , train , val
f_train = region_features["train"]
f_val = region_features["val"]
f_train2 = np.array(f_train)
f_val2 = np.array(f_val)
all_region_features = np.concatenate((f_train2, f_val2), axis=0)
# load bbox
bbox = h5py.File(prepared_files_dir + "bbox.h5", 'r+')
bbox_train = bbox["train"]
bbox_test = bbox["test"]
bbox_val = bbox["val"]
b_train2 = np.array(bbox_train)
b_val2 = np.array(bbox_val)
all_bbox = np.concatenate((b_train2, b_val2), axis=0)
with open("entire_image.json") as entire:
entire_image = json.load(entire)
test_entire_image = list(entire_image["test"])
train_entire_image = list(entire_image["train"])
val_entire_image = list(entire_image["val"])
all_entire_image = train_entire_image + val_entire_image
def set_default(obj):
if isinstance(obj, set):
return list(obj)
raise TypeError
result = ""
for img in range(len(test_img_list)):
print("image id:", img)
t3 = time.time()
# img=31
retrived_img_list = []
test_img_id = test_img_list[img]
copyfile(src + test_img_id, dst + str(img) + "/" + "QUERY_IMG" + test_img_id)
test_img_regions_score = []
# print("Image Number : " , test_img_id)
t1 = time.time()
####-----> remove
# retrive regions scores
score_file = open(scores_dir + str(test_img_id).split(".")[0] + ".txt", "r")
lines = score_file.readlines()
# print("step1")
for row in lines:
score = row.split("\n")[0].split("\t")[1] # score
test_img_regions_score.append(score)
t2 = time.time()
# print("time :",t2-t1)
# retrive LDA for test img
test_img_LDA = LDA_test_pred[img]
# retrive regions CNN features
test_img_regions_CNN = region_features["test"][img] # (30 , 2048)
# retrive bbox
test_img_regions_bbox = bbox_test[img]
score_matrix = np.zeros(shape=(30, 30))
# score_matrix = [[0] * 30] * 30
# find entire image (0,0,max_H,max_W)
test_img_entire = test_entire_image[img]
for candid_img_id in range(len(all_img_list)):
# t5=time.time()
# print("Candidate Image : ", all_img_list[candid_img_id])
# retrive LDA for train img
train_img_LDA = LDA_all_gt[candid_img_id]
candid_img_regions_bbox = all_bbox[candid_img_id]
candid_img_entire = all_entire_image[candid_img_id]
candid_img = all_img_list[candid_img_id]
candid_img_regions_CNN = all_region_features[candid_img_id] # (30 , 2048)
weighted_score = []
t7 = time.time()
for i in range(30): # test_img_regions
max_score_region = 0
region_score = float(test_img_regions_score[i])
test_img_region = test_img_regions_CNN[i]
if list(test_img_regions_bbox[i]) != test_img_entire:
for j in range(30): # candid_img_regions
if list(candid_img_regions_bbox[j]) != candid_img_entire:
# print("Regions with saliency :)")
candid_img_region = candid_img_regions_CNN[j]
similarity = compute_cosine_similarity(test_img_region, candid_img_region)
score_matrix[i][j] = similarity
if similarity > max_score_region:
max_score_region = similarity
else:
similarity = compute_cosine_similarity(train_img_LDA, test_img_LDA)
max_score_region = similarity
region_score = 1
weighted_similarity = max_score_region * region_score
weighted_score.append(weighted_similarity)
# t8=time.time()
# print("t8-t7" , t8-t7)
final_score = 0
for scr in range(len(weighted_score)):
final_score += weighted_score[scr]
candid_eval = [candid_img, final_score]
retrived_img_list.append(candid_eval)
# t6=time.time()
# print("t6-t5",t6-t5)
# t9 = time.time()
retrived_img_list.sort(key=lambda c: c[1], reverse=True)
selected_retrived_img_list = retrived_img_list[:100]
final_retrived, _, _ = remove_outliers(selected_retrived_img_list)
# t10 = time.time()
# print("t10-t9", t10 - t9)
OUTPUT.append(final_retrived)
# print("here")
for item in range(len(final_retrived)):
retrive_img_id = final_retrived[item][0]
# print("copy image ...")
copyfile(src + str(retrive_img_id),
dst + str(img) + "/" + str(final_retrived[item][1]) + "_" + str(retrive_img_id))
# t4=time.time()
# print("t4-t3" , t4-t3)
# for candid_img_id in range(len(DATASET)):
#
# if candid_img_id < len(train_img_list):
# candid_img = train_img_list[candid_img_id]
# candid_img_regions_CNN = region_features["train"][candid_img_id] #(30 , 2048)
# candid_img_regions_bbox = bbox_train[candid_img_id]
# weighted_score=[]
# for i in range(30): #test_img_regions
# max_score_region=0
# test_img_region = test_img_regions_CNN[i]
#
# if list(test_img_regions_bbox[0][i])!=[0,0,max_H,max_w]:
# for j in range(30): #candid_img_regions
# candid_img_region = candid_img_regions_CNN[j]
# similarity = compute_cosine_similarity(test_img_region , candid_img_region)
# score_matrix[i][j]=similarity
# if similarity>max_score_region:
# max_score_region=similarity
#
# else:
#
#
# #delete weight
# weighted_similarity = max_score_region
# weighted_score.append(weighted_similarity)
#
# final_score=0
#
# for scr in range(len(weighted_score)):
# final_score+=weighted_score[scr]
#
# copyfile(src + candid_img , dst + str(img) + "/" + str(final_score.__format__(".5f")) +"_"+candid_img)
#
# else:
# candid_img = val_img_list[candid_img_id]
# candid_img_regions_CNN = region_features["val"][candid_img_id] # (30 , 2048)
# candid_img_regions_bbox = bbox_val[candid_img_id]
# weighted_score = []
# for i in range(30): # test_img_regions
# max_score_region = 0
# test_img_region = test_img_regions_CNN[i]
#
# for j in range(30): # candid_img_regions
# candid_img_region = candid_img_regions_CNN[j]
# similarity = compute_cosine_similarity(test_img_region, candid_img_region)
# score_matrix[i][j] = similarity
# if similarity > max_score_region:
# max_score_region = similarity
#
#
# delete weight
# weighted_similarity = max_score_region
# weighted_score.append(weighted_similarity)
#
# final_score = 0
#
# for scr in range(len(weighted_score)):
# final_score += weighted_score[scr]
#
# copyfile(src + candid_img, dst + str(img) + "/" + str(final_score.__format__(".5f")) + "_" + candid_img)
for q in OUTPUT[0]:
z = []
z.append(q[0])
z.append(str(q[1]))
OUTPUT2.append(z)
# print("OUTPUT",OUTPUT[0])
# print("len-OUTPUT",len(OUTPUT))
RESULT = {"retrieved": OUTPUT2}
with open('retrieved.json', 'w') as outfile:
json.dump(RESULT, outfile)