-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrag_chatbot_app.py
56 lines (40 loc) · 2.26 KB
/
rag_chatbot_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import streamlit as st # all streamlit commands will be available through the "st" alias
import rag_chatbot_lib as glib # reference to local lib script
st.set_page_config(page_title="RAG Chatbot") # HTML title
st.title("RAG Chatbot") # page title
if "memory" not in st.session_state: # see if the memory hasn't been created yet
st.session_state.memory = glib.get_memory() # initialize the memory
if (
"chat_history" not in st.session_state
): # see if the chat history hasn't been created yet
st.session_state.chat_history = [] # initialize the chat history
if (
"vector_index" not in st.session_state
): # see if the vector index hasn't been created yet
with st.spinner(
"Indexing document..."
): # show a spinner while the code in this with block runs
st.session_state.vector_index = glib.get_index() # retrieve the index through the supporting library and store in the app's session cache
# Re-render the chat history (Streamlit re-runs this script, so need this to preserve previous chat messages)
for message in st.session_state.chat_history: # loop through the chat history
with st.chat_message(
message["role"]
): # renders a chat line for the given role, containing everything in the with block
st.markdown(message["text"]) # display the chat content
input_text = st.chat_input("Chat with your bot here") # display a chat input box
if input_text: # run the code in this if block after the user submits a chat message
with st.chat_message("user"): # display a user chat message
st.markdown(input_text) # renders the user's latest message
st.session_state.chat_history.append(
{"role": "user", "text": input_text}
) # append the user's latest message to the chat history
chat_response = glib.get_rag_chat_response(
input_text=input_text,
memory=st.session_state.memory,
index=st.session_state.vector_index,
) # call the model through the supporting library
with st.chat_message("assistant"): # display a bot chat message
st.markdown(chat_response) # display bot's latest response
st.session_state.chat_history.append(
{"role": "assistant", "text": chat_response}
) # append the bot's latest message to the chat history