-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathagm.m
52 lines (48 loc) · 1.61 KB
/
agm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
function [a,b,c,n] = agm(a0,b0,c0,tol)
% AGM calculates the Artihmetic Geometric Mean of A and B (see [1]).
% The function is used by routines ELLIPJ and ELLIPTIC12.
%
% [A,B,C,N] = AGM(A0,B0,C0,TOL) carry out the process of the arithmetic geometric
% mean, starting with a given positive numbers triple (A0,B0,C0) and returns in
% (A,B,C) the generated sequence. N is a number of steps (returns in the type uint32).
%
% The general scheme of the process:
% A(i) = 1/2*( A(i-1)+B(i-1) ); A(0) = A0;
% B(i) = sqrt( A(i-1)*B(i-1) ); B(0) = B0;
% C(i) = 1/2*( A(i-1)-B(i-1) ); C(0) = C0;
% Stop at the N-th step when A(N) = B(N), i.e., when C(N) = 0.
%
% See also ELLIPKE, ELLIPJ, ELLIPTIC12, ELLIPTIC3, THETA.
%
% References:
% [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical
% Functions" Dover Publications", 1965, Ch. 17.1 - 17.6.
if nargin<4, tol = eps; end
if nargin<3, error('Not enough input arguments.'); end
% pre-allocate space and augment if needed
chunk = 8; mmax = numel(a0);
a = zeros(chunk,mmax);
c = a;
b = a;
a(1,:) = a0;
b(1,:) = b0;
c(1,:) = c0;
n = uint32( zeros(1,mmax) );
i = 1;
while any(abs(c(i,:)) > tol)
i = i + 1;
if i > size(a,1)
a = [a; zeros(chunk,mmax)];
b = [b; zeros(chunk,mmax)];
c = [c; zeros(chunk,mmax)];
end
a(i,:) = 0.5 * (a(i-1,:) + b(i-1,:));
b(i,:) = sqrt(a(i-1,:) .* b(i-1,:));
c(i,:) = 0.5 * (a(i-1,:) - b(i-1,:));
in = uint32( find((abs(c(i,:)) <= tol) & (abs(c(i-1,:)) > tol)) );
if ~isempty(in)
[mi,ni] = size(in);
n(in) = ones(mi,ni)*(i-1);
end
end
% END FUNCTION AGM()