@@ -300,9 +300,9 @@ Join us in unlocking the full potential of unstructured data using the power of
300
300
301
301
---
302
302
303
- # ` spaCy ` for Natural Language Processing (NLP)
303
+ ## ` spaCy ` for Natural Language Processing (NLP)
304
304
305
- ## 1. Tokenization and Text Preprocessing
305
+ ### 1. Tokenization and Text Preprocessing
306
306
307
307
| Component | Description |
308
308
| ---------------------| -------------------------------------------------------------------------------------------------|
@@ -312,62 +312,62 @@ Join us in unlocking the full potential of unstructured data using the power of
312
312
| Lemmatization | - Reduces words to their base or dictionary form (e.g., "better" becomes "good"). |
313
313
| Dependency Parsing | - Analyzes grammatical relationships between words in a sentence. |
314
314
315
- ## 2. Word Vectors and Embeddings
315
+ ### 2. Word Vectors and Embeddings
316
316
317
317
| Component | Description |
318
318
| ---------------------| -------------------------------------------------------------------------------------------------|
319
319
| Word Vectors | - Provides word vectors (word embeddings) for words in various languages. |
320
320
| Pre-trained Models | - Offers pre-trained models with word embeddings for common NLP tasks. |
321
321
| Similarity Analysis | - Measures word and document similarity based on word vectors. |
322
322
323
- ## 3. Text Classification
323
+ ### 3. Text Classification
324
324
325
325
| Component | Description |
326
326
| ---------------------| -------------------------------------------------------------------------------------------------|
327
327
| Text Classification | - Supports text classification tasks using machine learning models. |
328
328
| Custom Models | - Allows training custom text classification models with spaCy. |
329
329
330
- ## 4. Rule-Based Matching
330
+ ### 4. Rule-Based Matching
331
331
332
332
| Component | Description |
333
333
| ---------------------| -------------------------------------------------------------------------------------------------|
334
334
| Rule-Based Matching | - Defines rules to identify and extract information based on patterns in text data. |
335
335
| Phrase Matching | - Matches phrases and entities using custom rules. |
336
336
337
- ## 5. Entity Linking and Disambiguation
337
+ ### 5. Entity Linking and Disambiguation
338
338
339
339
| Component | Description |
340
340
| ---------------------| -------------------------------------------------------------------------------------------------|
341
341
| Entity Linking | - Links named entities to external knowledge bases or databases (e.g., Wikipedia). |
342
342
| Disambiguation | - Resolves entity mentions to the correct entity in a knowledge base. |
343
343
344
- ## 6. Text Summarization
344
+ ### 6. Text Summarization
345
345
346
346
| Component | Description |
347
347
| ---------------------| -------------------------------------------------------------------------------------------------|
348
348
| Text Summarization | - Generates concise summaries of longer text documents. |
349
349
| Extractive Summarization | - Summarizes text by selecting and extracting important sentences. |
350
350
| Abstractive Summarization | - Summarizes text by generating new sentences that capture the essence of the content. |
351
351
352
- ## 7. Dependency Visualization
352
+ ### 7. Dependency Visualization
353
353
354
354
| Component | Description |
355
355
| ---------------------| -------------------------------------------------------------------------------------------------|
356
356
| Dependency Visualization | - Creates visual representations of sentence grammatical structure and dependencies. |
357
357
358
- ## 8. Language Detection
358
+ ### 8. Language Detection
359
359
360
360
| Component | Description |
361
361
| ---------------------| -------------------------------------------------------------------------------------------------|
362
362
| Language Detection | - Detects the language of text data. |
363
363
364
- ## 9. Named Entity Recognition (NER) Customization
364
+ ### 9. Named Entity Recognition (NER) Customization
365
365
366
366
| Component | Description |
367
367
| ---------------------| -------------------------------------------------------------------------------------------------|
368
368
| NER Training | - Allows training custom named entity recognition models for specific entities or domains. |
369
369
370
- ## 10. Language Support
370
+ ### 10. Language Support
371
371
372
372
| Component | Description |
373
373
| ---------------------| -------------------------------------------------------------------------------------------------|
@@ -378,47 +378,47 @@ Join us in unlocking the full potential of unstructured data using the power of
378
378
379
379
---
380
380
381
- # ` Gensim ` for Natural Language Processing (NLP)
381
+ ## ` Gensim ` for Natural Language Processing (NLP)
382
382
383
- ## 1. Word Embeddings and Word Vector Models
383
+ ### 1. Word Embeddings and Word Vector Models
384
384
385
385
| Component | Description |
386
386
| ---------------------| -------------------------------------------------------------------------------------------------|
387
387
| Word2Vec | - Implements Word2Vec models for learning word embeddings from text data. |
388
388
| FastText | - Provides FastText models for learning word embeddings, including subword information. |
389
389
| Doc2Vec | - Learns document-level embeddings, allowing you to represent entire documents as vectors. |
390
390
391
- ## 2. Topic Modeling
391
+ ### 2. Topic Modeling
392
392
393
393
| Component | Description |
394
394
| ---------------------| -------------------------------------------------------------------------------------------------|
395
395
| Latent Dirichlet Allocation (LDA) | - Implements LDA for discovering topics within a collection of documents. |
396
396
| Latent Semantic Analysis (LSA) | - Performs LSA for extracting topics and concepts from large document corpora. |
397
397
| Non-Negative Matrix Factorization (NMF) | - Applies NMF for topic modeling and feature extraction from text data. |
398
398
399
- ## 3. Similarity and Document Comparison
399
+ ### 3. Similarity and Document Comparison
400
400
401
401
| Component | Description |
402
402
| ---------------------| -------------------------------------------------------------------------------------------------|
403
403
| Cosine Similarity | - Measures cosine similarity between vectors, useful for document and word similarity comparisons. |
404
404
| Similarity Queries | - Supports similarity queries to find similar documents or words based on embeddings. |
405
405
406
- ## 4. Text Preprocessing
406
+ ### 4. Text Preprocessing
407
407
408
408
| Component | Description |
409
409
| ---------------------| -------------------------------------------------------------------------------------------------|
410
410
| Tokenization | - Provides text tokenization for splitting text into words or sentences. |
411
411
| Stopwords Removal | - Removes common words from text data to improve the quality of topic modeling. |
412
412
| Phrase Detection | - Detects common phrases or bigrams in text data. |
413
413
414
- ## 5. Model Training and Customization
414
+ ### 5. Model Training and Customization
415
415
416
416
| Component | Description |
417
417
| ---------------------| -------------------------------------------------------------------------------------------------|
418
418
| Model Training | - Trains custom word embeddings models on your text data for specific applications. |
419
419
| Model Serialization | - Allows you to save and load trained models for future use. |
420
420
421
- ## 6. Integration with Other Libraries
421
+ ### 6. Integration with Other Libraries
422
422
423
423
| Component | Description |
424
424
| ---------------------| -------------------------------------------------------------------------------------------------|
@@ -429,60 +429,60 @@ Join us in unlocking the full potential of unstructured data using the power of
429
429
430
430
---
431
431
432
- # ` Transformer ` Based Models for Natural Language Processing (NLP)
432
+ ## ` Transformer ` Based Models for Natural Language Processing (NLP)
433
433
434
- ## 1. Hugging Face Transformers
434
+ ### 1. Hugging Face Transformers
435
435
436
436
| Component | Description |
437
437
| ---------------------| -------------------------------------------------------------------------------------------------|
438
438
| Transformers Library | - Provides easy-to-use access to a wide range of pre-trained transformer models for NLP tasks. |
439
439
| Pre-trained Models | - Includes models like BERT, GPT-2, RoBERTa, T5, and more, each specialized for specific NLP tasks. |
440
440
| Fine-Tuning | - Supports fine-tuning pre-trained models on custom NLP datasets for various downstream applications. |
441
441
442
- ## 2. BERT (Bidirectional Encoder Representations from Transformers)
442
+ ### 2. BERT (Bidirectional Encoder Representations from Transformers)
443
443
444
444
| Component | Description |
445
445
| ---------------------| -------------------------------------------------------------------------------------------------|
446
446
| BERT Models | - Pre-trained BERT models capture contextual information from both left and right context in text. |
447
447
| Fine-Tuning | - Fine-tuning BERT for tasks like text classification, NER, and question-answering is widely adopted. |
448
448
| Sentence Embeddings | - BERT embeddings can be used for sentence and document-level embeddings. |
449
449
450
- ## 3. GPT (Generative Pre-trained Transformer)
450
+ ### 3. GPT (Generative Pre-trained Transformer)
451
451
452
452
| Component | Description |
453
453
| ---------------------| -------------------------------------------------------------------------------------------------|
454
454
| GPT Models | - GPT-2 and GPT-3 models are popular for generating text and performing various NLP tasks. |
455
455
| Text Generation | - GPT models are known for their text generation capabilities, making them useful for creative tasks. |
456
456
457
- ## 4. RoBERTa (A Robustly Optimized BERT Pretraining Approach)
457
+ ### 4. RoBERTa (A Robustly Optimized BERT Pretraining Approach)
458
458
459
459
| Component | Description |
460
460
| ---------------------| -------------------------------------------------------------------------------------------------|
461
461
| RoBERTa Models | - RoBERTa builds upon BERT with optimization techniques, achieving better performance on many tasks. |
462
462
| Fine-Tuning | - Fine-tuning RoBERTa for text classification and other tasks is common for improved accuracy. |
463
463
464
- ## 5. T5 (Text-to-Text Transfer Transformer)
464
+ ### 5. T5 (Text-to-Text Transfer Transformer)
465
465
466
466
| Component | Description |
467
467
| ---------------------| -------------------------------------------------------------------------------------------------|
468
468
| T5 Models | - T5 models are designed for text-to-text tasks, allowing you to frame various NLP tasks in a unified manner. |
469
469
| Task Agnostic | - T5 can handle a wide range of NLP tasks, from translation to summarization and question-answering. |
470
470
471
- ## 6. XLNet (eXtreme MultiLabelNet)
471
+ ### 6. XLNet (eXtreme MultiLabelNet)
472
472
473
473
| Component | Description |
474
474
| ---------------------| -------------------------------------------------------------------------------------------------|
475
475
| XLNet Models | - XLNet improves upon BERT by considering all permutations of input tokens, enhancing context modeling. |
476
476
| Pre-training | - XLNet is pre-trained on vast text data and can be fine-tuned for various NLP applications. |
477
477
478
- ## 7. DistilBERT
478
+ ### 7. DistilBERT
479
479
480
480
| Component | Description |
481
481
| ---------------------| -------------------------------------------------------------------------------------------------|
482
482
| DistilBERT Models | - DistilBERT is a distilled version of BERT, offering a smaller and faster alternative for NLP tasks. |
483
483
| Efficiency | - DistilBERT provides similar performance to BERT with reduced computational requirements. |
484
484
485
- ## 8. Transformers for Other Languages
485
+ ### 8. Transformers for Other Languages
486
486
487
487
| Component | Description |
488
488
| ---------------------| -------------------------------------------------------------------------------------------------|
0 commit comments