-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
71 lines (59 loc) · 1.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
def clear_redondance(myList):
resultantList = []
for element in myList:
if element not in resultantList :
resultantList.append(element)
return resultantList
def sort_list(myList):
myList.sort()
return myList
def smooch(myList):
smooched_list = '-'.join(myList)
return smooched_list
def get_classes(result):
classes = []
for i in result:
smooched = smooch(i[2])
classes.append(smooched)
return clear_redondance(classes)
def create_table(attributs, classes):
empty = np.zeros((len(attributs), len(classes)))
table = pd.DataFrame(data = empty, columns = classes, index = attributs)
return table
def switch(x):
if x == "A":
return "Asthme"
elif x == "P":
return "BPCO"
elif x == "B":
return "Bronchiolite"
elif x == "19":
return "COVID-19"
elif x == "séche":
return "Toux séche"
elif x == "grâce":
return "Tout grâce"
elif x == "Géne":
return "Géne respiratoire"
elif x == "Maux":
return "Maux de tête"
elif x == "Perte":
return "Perte"
else:
return x
def simplify(FCs):
result = []
for i in range(len(FCs)):
s = list(FCs[i][1])
cls ,atr = [], []
for j in range(len(s)):
k = s[j].split('-')
k_0, k_1 = switch(k[0]), switch(k[1])
atr.append(k_0)
cls.append(k_1)
final_atr = list(dict.fromkeys(atr))
final_cls = list(dict.fromkeys(cls))
print((FCs[i][0], final_atr, final_cls))
result.append('\n')
result.append((FCs[i][0], final_atr, final_cls))
return result