-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfiller_node.py
executable file
·128 lines (97 loc) · 3.73 KB
/
filler_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import pdb
import cv2
import os
from collections import OrderedDict
import sys
import numpy as np
# from werkzeug.utils import secure_filename
# from flask import Flask, url_for, render_template, request, redirect, send_from_directory
from PIL import Image as imgpil
import base64
import io
import random
import rospy
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image, CameraInfo
import std_msgs.msg
from std_msgs.msg import String
import tf
import roslib
from options.test_options import TestOptions
import models
import torch
opt = TestOptions().parse()
model = models.create_model(opt)
model.eval()
# max_size = 256
# max_num_examples = 200
class filler_node:
def __init__(self):
self.image = None
self.mask = None
self.rate = rospy.Rate(15)
self.cvbridge = CvBridge()
self.msg_header = std_msgs.msg.Header()
self.depth_msg_header = std_msgs.msg.Header()
self.image_pub = rospy.Publisher("image_filled", Image, queue_size = 1)
self.image_sub = rospy.Subscriber("/image_compressed",Image, self.callback)
print("subscribed to /image_compressed")
self.depth_sub = rospy.Subscriber("dynamic_mask", Image, self.callback_m)
print("subscribed to /dynamic_mask")
def callback(self, frame):
self.image = self.cvbridge.imgmsg_to_cv2(frame,"bgr8")
def callback_m(self, mask):
self.mask = self.cvbridge.imgmsg_to_cv2(mask)
def process_image(self, img, mask):
# img = imgpil.fromarray(img)
# img =img.convert("RGB")
# img_raw = np.array(img)
# w_raw, h_raw = img.size
# h_t, w_t = h_raw//8*8, w_raw//8*8
# img = img.resize((w_t, h_t))
img = np.array(img).transpose((2,0,1))
# mask_raw = np.array(mask)[...,None]>0
# mask = mask.resize((w_t, h_t))
mask = np.array(mask)
mask = torch.from_numpy(mask)
mask = (torch.Tensor(mask)>0).float()
img = (torch.Tensor(img)).float()
img = (img/255-0.5)/0.5
img = img[None]
mask = mask[None,None]
with torch.no_grad():
generated,_ = model({'image':img,'mask':mask}, mode='inference')
generated = torch.clamp(generated, -1, 1)
generated = (generated+1)/2*255
generated = generated.cpu().numpy().astype(np.uint8)
generated = generated[0].transpose((1,2,0))
# result = np.zeros([generated.shape[0], generated.shape[1], generated.shape[2]])
# for ch in range(generated.shape[2]):
# result[:, :, ch] = np.where(np.asarray(mask) == 1, 0, generated[:, :, ch]) + np.where(np.asarray(mask) == 0, 1, img_raw[:, :, ch])
# result = np.array(result.astype(np.uint8))
# print('********************************')
# print(result.shape)
# result = imgpil.fromarray(result).resize((w_raw, h_raw))
# result = np.array(result)
# result = imgpil.fromarray(result.astype(np.uint8))
cv2.imshow('filled', generated)
cv2.waitKey(5)
return generated
def start(self):
# rospy.spin()
while not rospy.is_shutdown():
if self.image is not None:
image = Image()
image = self.process_image(self.image, self.mask)
image = self.cvbridge.cv2_to_imgmsg(image, "bgr8")
image.header = self.msg_header
self.image_pub.publish(image)
# rospy.loginfo('publishing filled dynamic image')
self.rate.sleep()
def main(args):
'''Initializes and cleans up ros node'''
rospy.init_node('filler_node', anonymous=True)
node = filler_node()
node.start()
if __name__ == "__main__":
main(sys.argv)