-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.cpp
232 lines (197 loc) · 5.77 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#include <thread>
#include <stdlib.h>
#include <chrono>
#include <vector>
#include <iostream>
#include <typeinfo>
#include <algorithm>
#include <limits>
#include <utility>
#include <memory>
#include <random>
#include <atomic>
using Time = std::chrono::nanoseconds;
const size_t minSize = 32;
const size_t maxSize = static_cast<size_t>(1) * 1024 * 1024 * 1024;
const size_t cacheSize = 50 * 1024 * 1024;
const size_t sizeStep = 2;
const size_t iterations = 1000;
const size_t differentValues = 20;
const size_t minThreads = 1;
const size_t maxThreads = 8;
const size_t threadStep = 2;
const size_t bufferSize = maxSize + maxThreads * cacheSize;
enum class Mode : int8_t { AGGREGATE, SCAN };
std::atomic_bool startFlag;
template<typename Elem>
struct TestResult
{
TestResult(Mode mode, size_t size, size_t threads)
: Average(0)
, Min(std::numeric_limits<size_t>::max())
, Max(0)
, RunMode(mode)
, Threads(threads)
, Size(size)
{
}
Time Average;
Time Min;
Time Max;
Mode RunMode;
const size_t Threads;
const size_t Size;
};
template<Mode mode>
struct Functor
{
template<typename Elem>
static size_t execute(Elem* data, size_t elementCount, size_t itr);
};
template<>
template<typename Elem>
size_t Functor<Mode::AGGREGATE>::execute(Elem* data, size_t elementCount, size_t itr)
{
size_t counter;
for (size_t iteration = 0; iteration < itr; ++iteration) {
counter = 0;
for (size_t current = 0; current < elementCount; ++current) {
counter += data[current];
}
}
return counter;
}
template<>
template<typename Elem>
size_t Functor<Mode::SCAN>::execute(Elem* data, size_t elementCount, size_t itr)
{
size_t counter;
for (size_t iteration = 0; iteration < itr; ++iteration) {
counter = 0;
for (size_t current = 0; current < elementCount; ++current) {
if (data[current] == 0) {
++counter;
}
}
}
return counter;
}
void clearCache()
{
static std::vector<uint8_t> cacheClearer(cacheSize);
volatile size_t count = 0;
for (auto elem : cacheClearer)
{
count += elem;
}
}
template<typename Elem, Mode mode>
Time measureTime(Elem* data, size_t elementCount, size_t type_size)
{
size_t itr = std::max(static_cast<size_t>(static_cast<double>(1ul<<33) / (elementCount * type_size)), iterations);
while (!startFlag.load());
// fill cache
Functor<mode>::template execute<Elem>(data, elementCount, itr/10);
const auto begin = std::chrono::high_resolution_clock::now();
auto result = Functor<mode>::template execute<Elem>(data, elementCount, itr);
const auto end = std::chrono::high_resolution_clock::now();
const volatile size_t optimizationBlocker = result;
return std::chrono::duration_cast<Time>(end - begin) / itr;
}
template<typename Elem>
void randomizeData(Elem* data, size_t elementCount)
{
// Fast random
data[0] = 1;
for (size_t current = 1; current < elementCount; ++current)
{
data[current] = (data[current - 1] + 7) * 13;
}
}
template<typename Elem, Mode mode>
std::vector<TestResult<Elem>> run(uint8_t* rawData)
{
std::vector<TestResult<Elem>> results;
auto data = reinterpret_cast<Elem*>(rawData);
randomizeData(data, bufferSize / sizeof(Elem));
for (size_t size = minSize; size < maxSize; size *= sizeStep)
{
const auto elementCount = size / sizeof(Elem);
for (size_t threadCount = minThreads; threadCount <= maxThreads; threadCount *= threadStep)
{
// skip unnecessary iterations
if (threadCount != 1 && sizeof(Elem) != sizeof(uint64_t)) {
continue;
}
TestResult<Elem> result(mode, size, threadCount);
int rounds = 5;
for (size_t iteration = 0; iteration < rounds; ++iteration)
{
std::vector<Time> times(threadCount);
std::vector<std::thread> threads(threadCount);
startFlag.store(false);
for (size_t currentThread = 0; currentThread < threadCount; ++currentThread)
{
threads[currentThread] = std::thread([×, currentThread, data, elementCount]()
{
times[currentThread] = measureTime<Elem, mode>(data + cacheSize / sizeof(Elem) * currentThread, elementCount, sizeof(Elem));
});
}
// Wait for all threads to start
std::this_thread::sleep_for(std::chrono::milliseconds(100));
startFlag.store(true);
for (auto &thread : threads)
{
thread.join();
}
// do not take first result for scans
if (iteration == 0) {
continue;
}
// for (auto &thread : threads)
// {
// thread = std::thread(clearCache);
// }
//
// for (auto &thread : threads)
// {
// thread.join();
// }
auto time = *std::max_element(times.cbegin(), times.cend());
result.Average += time;
result.Min = std::min(result.Min, time);
result.Max = std::max(result.Max, time);
}
result.Average /= (rounds - 1);
results.push_back(result);
}
}
return results;
}
template<typename Elem>
void printResult(const std::vector<TestResult<Elem>> &results)
{
for (auto &result : results)
{
std::cout
<< static_cast<int>(result.RunMode) << ";"
<< sizeof(Elem) << "; "
<< result.Size << "; "
<< result.Threads << "; "
<< result.Average.count() << "; "
<< (result.Size * result.Threads) / static_cast<double>(result.Average.count()) << std::endl;
}
}
int main(int argc, char** argv)
{
std::cout << "Benchmark_Type; Integer_Type; Vector_Size; Thread_Count; Count; Bandwidth" << std::endl;
auto data = std::make_unique<uint8_t[]>(bufferSize);
printResult(run<uint8_t, Mode::AGGREGATE>(data.get()));
printResult(run<uint16_t, Mode::AGGREGATE>(data.get()));
printResult(run<uint32_t, Mode::AGGREGATE>(data.get()));
printResult(run<uint64_t, Mode::AGGREGATE>(data.get()));
printResult(run<uint8_t, Mode::SCAN>(data.get()));
printResult(run<uint16_t, Mode::SCAN>(data.get()));
printResult(run<uint32_t, Mode::SCAN>(data.get()));
printResult(run<uint64_t, Mode::SCAN>(data.get()));
}