|
| 1 | +import os |
| 2 | +import sys |
| 3 | +import copy |
| 4 | +from absl import flags |
| 5 | +from absl.testing import absltest |
| 6 | +from absl.testing import parameterized |
| 7 | +from absl import logging |
| 8 | +from collections import namedtuple |
| 9 | +import json |
| 10 | +import jax |
| 11 | +from algoperf import halton |
| 12 | +from algoperf import random_utils as prng |
| 13 | +from algoperf.profiler import PassThroughProfiler |
| 14 | +from algoperf.workloads import workloads |
| 15 | +import submission_runner |
| 16 | +import reference_algorithms.development_algorithms.mnist.mnist_pytorch.submission as submission_pytorch |
| 17 | +import reference_algorithms.development_algorithms.mnist.mnist_jax.submission as submission_jax |
| 18 | +import jax.random as jax_rng |
| 19 | +# try: |
| 20 | +# import jax.random as jax_rng |
| 21 | +# except (ImportError, ModuleNotFoundError): |
| 22 | +# logging.warning( |
| 23 | +# 'Could not import jax.random for the submission runner, falling back to ' |
| 24 | +# 'numpy random_utils.') |
| 25 | +# jax_rng = None |
| 26 | + |
| 27 | +FLAGS = flags.FLAGS |
| 28 | +FLAGS(sys.argv) |
| 29 | + |
| 30 | +class Hyperparameters: |
| 31 | + def __init__(self): |
| 32 | + self.learning_rate = 0.0005 |
| 33 | + self.one_minus_beta_1 = 0.05 |
| 34 | + self.beta2 = 0.999 |
| 35 | + self.weight_decay = 0.01 |
| 36 | + self.epsilon = 1e-25 |
| 37 | + self.label_smoothing = 0.1 |
| 38 | + self.dropout_rate = 0.1 |
| 39 | + |
| 40 | +class CheckTime(parameterized.TestCase): |
| 41 | + """Tests to check if submission_time + eval_time + logging_time ~ total _wallclock_time """ |
| 42 | + rng_seed = 0 |
| 43 | + |
| 44 | + @parameterized.named_parameters( |
| 45 | + *[ dict( |
| 46 | + testcase_name = 'mnist_pytorch', |
| 47 | + framework = 'pytorch', |
| 48 | + init_optimizer_state=submission_pytorch.init_optimizer_state, |
| 49 | + update_params=submission_pytorch.update_params, |
| 50 | + data_selection=submission_pytorch.data_selection, |
| 51 | + rng = prng.PRNGKey(rng_seed))], |
| 52 | +
|
| 53 | + *[ |
| 54 | + dict( |
| 55 | + testcase_name = 'mnist_jax', |
| 56 | + framework = 'jax', |
| 57 | + init_optimizer_state=submission_jax.init_optimizer_state, |
| 58 | + update_params=submission_jax.update_params, |
| 59 | + data_selection=submission_jax.data_selection, |
| 60 | + #rng = jax.random.PRNGKey(rng_seed),), |
| 61 | + rng = prng.PRNGKey(rng_seed),), |
| 62 | + ] |
| 63 | + ) |
| 64 | + def test_train_once_time_consistency(self, framework, init_optimizer_state, update_params, data_selection, rng): |
| 65 | + """Test to check the consistency of timing metrics.""" |
| 66 | + rng_seed = 0 |
| 67 | + #rng = jax.random.PRNGKey(rng_seed) |
| 68 | + #rng, _ = prng.split(rng, 2) |
| 69 | + workload_metadata = copy.deepcopy(workloads.WORKLOADS["mnist"]) |
| 70 | + workload_metadata['workload_path'] = os.path.join( |
| 71 | + workloads.BASE_WORKLOADS_DIR, |
| 72 | + workload_metadata['workload_path'] + '_' + framework, |
| 73 | + 'workload.py') |
| 74 | + workload = workloads.import_workload( |
| 75 | + workload_path=workload_metadata['workload_path'], |
| 76 | + workload_class_name=workload_metadata['workload_class_name'], |
| 77 | + workload_init_kwargs={}) |
| 78 | + |
| 79 | + Hp = namedtuple("Hp",["dropout_rate", "learning_rate", "one_minus_beta_1", "weight_decay", "beta2", "warmup_factor", "epsilon" ]) |
| 80 | + hp1 = Hp(0.1,0.0017486387539278373,0.06733926164,0.9955159689799007,0.08121616522670176, 0.02, 1e-25) |
| 81 | + # HPARAMS = { |
| 82 | + # "dropout_rate": 0.1, |
| 83 | + # "learning_rate": 0.0017486387539278373, |
| 84 | + # "one_minus_beta_1": 0.06733926164, |
| 85 | + # "beta2": 0.9955159689799007, |
| 86 | + # "weight_decay": 0.08121616522670176, |
| 87 | + # "warmup_factor": 0.02, |
| 88 | + # "epsilon" : 1e-25 |
| 89 | + # } |
| 90 | + |
| 91 | + |
| 92 | + accumulated_submission_time, metrics = submission_runner.train_once( |
| 93 | + workload = workload, |
| 94 | + workload_name="mnist", |
| 95 | + global_batch_size = 32, |
| 96 | + global_eval_batch_size = 256, |
| 97 | + data_dir = '~/tensorflow_datasets', # not sure |
| 98 | + imagenet_v2_data_dir = None, |
| 99 | + hyperparameters= hp1, |
| 100 | + init_optimizer_state = init_optimizer_state, |
| 101 | + update_params = update_params, |
| 102 | + data_selection = data_selection, |
| 103 | + rng = rng, |
| 104 | + rng_seed = 0, |
| 105 | + profiler= PassThroughProfiler(), |
| 106 | + max_global_steps=500, |
| 107 | + prepare_for_eval = None) |
| 108 | + |
| 109 | + |
| 110 | + # Example: Check if total time roughly equals to submission_time + eval_time + logging_time |
| 111 | + total_logged_time = (metrics['eval_results'][-1][1]['total_duration'] |
| 112 | + - (accumulated_submission_time + |
| 113 | + metrics['eval_results'][-1][1]['accumulated_logging_time'] + |
| 114 | + metrics['eval_results'][-1][1]['accumulated_eval_time'])) |
| 115 | + |
| 116 | + # Use a tolerance for floating-point arithmetic |
| 117 | + tolerance = 10 |
| 118 | + self.assertAlmostEqual(total_logged_time, 0, delta=tolerance, |
| 119 | + msg="Total wallclock time does not match the sum of submission, eval, and logging times.") |
| 120 | + |
| 121 | + # Check if the expected number of evaluations occurred |
| 122 | + expected_evals = int(accumulated_submission_time // workload.eval_period_time_sec) |
| 123 | + self.assertTrue(expected_evals <= len(metrics['eval_results']) + 2, |
| 124 | + f"Number of evaluations {len(metrics['eval_results'])} exceeded the expected number {expected_evals + 2}.") |
| 125 | + |
| 126 | +if __name__ == '__main__': |
| 127 | + absltest.main() |
0 commit comments