-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
45 lines (37 loc) · 1.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from math import log2, ceil
from histogan.data import GANData
from histogan.training import MsiTraining
from histogan.modules.histogan import get_histo_GAN
from histogan.parser import parse_args
from torchsupport.structured import DataParallel as SDP
if __name__ == "__main__":
opt = parse_args()
data = GANData(opt.path)
size = data[0][0].size(-1) # get size from the dataset.
generator, discriminator = get_histo_GAN(
size,
mode=opt.mode,
condition_size=len(data.kinds),
condition_embedding_size=opt.condition
)
if opt.device != "cpu":
generator = SDP(generator)
discriminator = SDP(discriminator)
training = MsiTraining(
generator, discriminator, data,
smoothing=opt.smoothing,
gamma=opt.gradient_penalty,
generator_optimizer_kwargs=dict(
lr=opt.generator_lr, betas=(opt.beta_1, opt.beta_2)
),
discriminator_optimizer_kwargs=dict(
lr=opt.discriminator_lr, betas=(opt.beta_1, opt.beta_2)
),
max_epochs=opt.max_epochs,
device=opt.device,
batch_size=opt.batch_size,
verbose=True,
path_prefix=opt.prefix,
network_name=opt.name
)
training.train()