-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_sketch.js
191 lines (157 loc) · 5.65 KB
/
trainer_sketch.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
// Copyright (c) 2018 ml5
//
// This software is released under the MIT License.
// https://opensource.org/licenses/MIT
/* ===
ml5 Example
KNN Classification on Webcam Images with mobileNet. Built with p5.js
=== */
let video;
// Create a KNN classifier
const knnClassifier = ml5.KNNClassifier();
// Create a featureExtractor that can extract the already learned features from MobileNet
const featureExtractor = ml5.featureExtractor('MobileNet', modelReady);
function setup() {
noCanvas();
// Create a video element
video = createCapture(VIDEO);
// Append it to the videoContainer DOM element
video.parent('videoContainer');
// Create the UI buttons
createButtons();
}
function modelReady(){
select('#status').html('FeatureExtractor(mobileNet model) Loaded')
}
// Add the current frame from the video to the classifier
function addExample(label) {
// Get the features of the input video
const features = featureExtractor.infer(video);
// You can also pass in an optional endpoint, defaut to 'conv_preds'
// const features = featureExtractor.infer(video, 'conv_preds');
// You can list all the endpoints by calling the following function
// console.log('All endpoints: ', featureExtractor.mobilenet.endpoints)
// Add an example with a label to the classifier
knnClassifier.addExample(features, label);
updateExampleCounts();
}
// Predict the current frame.
function classify() {
// Get the total number of classes from knnClassifier
const numClasses = knnClassifier.getNumLabels();
if (numClasses <= 0) {
console.error('There is no examples in any class');
return;
}
// Get the features of the input video
const features = featureExtractor.infer(video);
// Use knnClassifier to classify which class do these features belong to
// You can pass in a callback function `gotResults` to knnClassifier.classify function
knnClassifier.classify(features, gotResults);
// You can also pass in an optional K value, K default to 3
// knnClassifier.classify(features, 3, gotResults);
// You can also use the following async/await function to call knnClassifier.classify
// Remember to add `async` before `function predictClass()`
// const res = await knnClassifier.classify(features);
// gotResults(null, res);
}
// A util function to create UI buttons
function createButtons() {
// When the A button is pressed, add the current frame
// from the video with a label of "rock" to the classifier
buttonA = select('#addClassSmile');
buttonA.mousePressed(function() {
addExample('Smile');
});
// When the B button is pressed, add the current frame
// from the video with a label of "paper" to the classifier
buttonB = select('#addClassSunglasses');
buttonB.mousePressed(function() {
addExample('Sunglasses');
});
// When the C button is pressed, add the current frame
// from the video with a label of "scissor" to the classifier
buttonC = select('#addClassThinking');
buttonC.mousePressed(function() {
addExample('Thinking');
});
buttonD = select('#addClassTongue');
buttonD.mousePressed(function() {
addExample('Tongue');
});
// Reset buttons
resetBtnA = select('#resetSmile');
resetBtnA.mousePressed(function() {
clearClass('Smile');
});
resetBtnB = select('#resetSunglasses');
resetBtnB.mousePressed(function() {
clearClass('Sunglasses');
});
resetBtnC = select('#resetThinking');
resetBtnC.mousePressed(function() {
clearClass('Thinking');
});
resetBtnD = select('#resetTongue');
resetBtnD.mousePressed(function() {
clearClass('Tongue');
});
// Load saved classifier dataset
buttonSetData = select('#load');
buttonSetData.mousePressed(loadDataset);
// Predict button
buttonPredict = select('#buttonPredict');
buttonPredict.mousePressed(classify);
// Clear all classes button
buttonClearAll = select('#clearAll');
buttonClearAll.mousePressed(clearAllClasses);
// Get classifier dataset
buttonGetData = select('#save');
buttonGetData.mousePressed(saveDataset);
}
// Show the results
function gotResults(err, result) {
// Display any error
if (err) {
console.error(err);
}
if (result.confidencesByLabel) {
const confideces = result.confidencesByLabel;
// result.label is the label that has the highest confidence
if (result.label) {
select('#result').html(result.label);
select('#confidence').html(`${confideces[result.label] * 100} %`);
}
select('#confidenceSmile').html(`${confideces['Smile'] ? confideces['Smile'] * 100 : 0} %`);
select('#confidenceSunglasses').html(`${confideces['Sunglasses'] ? confideces['Sunglasses'] * 100 : 0} %`);
select('#confidenceThinking').html(`${confideces['Thinking'] ? confideces['Thinking'] * 100 : 0} %`);
select('#confidenceTongue').html(`${confideces['Tongue'] ? confideces['Tongue'] * 100 : 0} %`);
}
classify();
}
// Update the example count for each class
function updateExampleCounts() {
const counts = knnClassifier.getCountByLabel();
select('#exampleSmile').html(counts['Smile'] || 0);
select('#exampleSunglasses').html(counts['Sunglasses'] || 0);
select('#exampleThinking').html(counts['Thinking'] || 0);
select('#exampleTongue').html(counts['Tongue'] || 0);
}
// Clear the examples in one class
function clearClass(classLabel) {
knnClassifier.clearClass(classLabel);
updateExampleCounts();
}
// Clear all the examples in all classes
function clearAllClasses() {
knnClassifier.clearAllClasses();
updateExampleCounts();
}
// Save dataset as myKNNDataset.json
function saveDataset() {
knnClassifier.save('myKNNDataset');
}
// Load dataset to the classifier
function loadDataset() {
knnClassifier.load('./myKNNDataset.json', updateExampleCounts);
}