forked from xxyzz/WordDumb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdump_lemmas.py
175 lines (158 loc) · 4.9 KB
/
dump_lemmas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import sqlite3
from pathlib import Path
try:
from .utils import (
Prefs,
custom_lemmas_folder,
insert_installed_libs,
load_plugin_json,
use_kindle_ww_db,
)
except ImportError:
from utils import (
Prefs,
custom_lemmas_folder,
insert_installed_libs,
load_plugin_json,
use_kindle_ww_db,
)
def spacy_doc_path(
spacy_model: str,
model_version: str,
lemma_lang: str,
is_kindle: bool,
is_phrase: bool,
plugin_path: Path,
prefs: Prefs,
):
import platform
gloss_lang = prefs["kindle_gloss_lang" if is_kindle else "wiktionary_gloss_lang"]
if is_kindle and not use_kindle_ww_db(lemma_lang, prefs):
is_kindle = False
py_version = ".".join(platform.python_version_tuple()[:2])
path = custom_lemmas_folder(plugin_path, lemma_lang).joinpath(
f"{spacy_model}_{'kindle' if is_kindle else 'wiktionary'}"
f"_{gloss_lang}_{model_version}_{py_version}"
)
if prefs["use_pos"]:
if is_phrase:
path = path.with_name(path.name + "_phrase")
path = path.with_name(path.name + "_pos")
return path
def dump_spacy_docs(
spacy_model: str,
is_kindle: bool,
lemma_lang: str,
db_path: Path,
plugin_path: Path,
prefs: Prefs,
):
insert_installed_libs(plugin_path)
import spacy
excluded_components = ["ner", "parser"]
if lemma_lang == "zh" or not prefs["use_pos"]:
excluded_components.extend(
["tok2vec", "morphologizer", "tagger", "attribute_ruler", "lemmatizer"]
)
nlp = spacy.load(spacy_model, exclude=excluded_components)
lemmas_conn = sqlite3.connect(db_path)
pkg_versions = load_plugin_json(plugin_path, "data/deps.json")
save_spacy_docs(
nlp,
spacy_model,
pkg_versions[
"spacy_trf_model" if spacy_model.endswith("_trf") else "spacy_cpu_model"
],
lemma_lang,
is_kindle,
lemmas_conn,
plugin_path,
prefs,
)
lemmas_conn.close()
def save_spacy_docs(
nlp,
spacy_model: str,
model_version: str,
lemma_lang: str,
is_kindle: bool,
lemmas_conn: sqlite3.Connection,
plugin_path: Path,
prefs: Prefs,
):
from spacy.tokens import DocBin
phrases_doc_bin = DocBin(attrs=["LOWER"])
if prefs["use_pos"] and lemma_lang != "zh":
lemmas_doc_bin = DocBin(attrs=["LEMMA"])
difficulty_limit = (
None if is_kindle else prefs[f"{lemma_lang}_wiktionary_difficulty_limit"]
)
if prefs["use_pos"]:
for doc in create_lemma_patterns_with_pos(
lemma_lang, lemmas_conn, nlp, difficulty_limit
):
if " " in doc.text or lemma_lang == "zh":
phrases_doc_bin.add(doc)
if " " not in doc.text and lemma_lang != "zh":
lemmas_doc_bin.add(doc)
else:
for doc in create_lemma_patterns_without_pos(
lemmas_conn, nlp, difficulty_limit
):
phrases_doc_bin.add(doc)
with open(
spacy_doc_path(
spacy_model, model_version, lemma_lang, is_kindle, True, plugin_path, prefs
),
"wb",
) as f:
f.write(phrases_doc_bin.to_bytes())
if prefs["use_pos"] and lemma_lang != "zh":
with open(
spacy_doc_path(
spacy_model,
model_version,
lemma_lang,
is_kindle,
False,
plugin_path,
prefs,
),
"wb",
) as f:
f.write(lemmas_doc_bin.to_bytes())
def create_lemma_patterns_with_pos(lemma_lang, conn, nlp, difficulty_limit):
query_sql = """
SELECT DISTINCT lemma, lemma_id
FROM senses JOIN lemmas ON senses.lemma_id = lemmas.id
WHERE enabled = 1
"""
if difficulty_limit is not None:
query_sql += f" AND difficulty <= {difficulty_limit}"
for lemma, lemma_id in conn.execute(query_sql):
yield nlp(lemma)
if " " in lemma or lemma_lang == "zh":
for (form,) in conn.execute(
"SELECT DISTINCT form FROM forms WHERE lemma_id = ?", (lemma_id,)
):
yield nlp(form)
def create_lemma_patterns_without_pos(conn, nlp, difficulty_limit):
query_sql = """
SELECT DISTINCT lemma
FROM senses JOIN lemmas ON senses.lemma_id = lemmas.id
WHERE enabled = 1
"""
if difficulty_limit is not None:
query_sql += f" AND difficulty <= {difficulty_limit}"
for (lemma,) in conn.execute(query_sql):
yield nlp.make_doc(lemma)
query_sql = """
SELECT DISTINCT form
FROM senses JOIN forms
ON senses.lemma_id = forms.lemma_id AND senses.pos = forms.pos
WHERE enabled = 1
"""
if difficulty_limit is not None:
query_sql += f" AND difficulty <= {difficulty_limit}"
for (form,) in conn.execute(query_sql):
yield nlp.make_doc(form)