-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_nnc.c
237 lines (181 loc) · 5.43 KB
/
test_nnc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*----------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
A simple neural network test for 3-digits logic analysis.
Some hints:
1. As number of layers increases, learn rate shall be smaller.
2. Simple minds learn simple things.
Midas Zhou
-----------------------------------------------------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdbool.h>
#include <math.h>
//#include <sys/time.h>
#include <string.h>
#include "nnc.h"
#include "actfs.h"
#define ERR_LIMIT 0.001
int main(void)
{
int i,j;
int count=0;
int loop=0;
int wi_cellnum=3; /* wi layer cell number */
int wm_cellnum=3; /* wm layer cell number */
int wo_cellnum=1; /* wo layer cell number */
int wi_inpnum=3; /* number of input data for each input/hidden nvcell */
int wm_inpnum=3; /* number of input data for each middle nvcell */
int wo_inpnum=3; /* number of input data for each output nvcell */
double err;
int ns=8; /* input sample number + teacher value */
bool gradient_checked=false;
double pin[8*4]= /* 3 input + 1 teacher value */
#if 0 /* when [0]+[1]+[2]>=2, output [3]=1 */
{
1,1,1,1,
1,1,0,1,
1,0,1,1,
1,0,0,0,
0,1,1,1,
0,1,0,0,
0,0,1,0,
0,0,0,0,
};
#endif
#if 1 /* Logic: [3]=(-1)^([0]+[1]+[2]) */
{
1,1,1,-1,
1,1,0.1,1,
1,0.1,1,1,
1,0.1,0.1,-1,
0.1,1,1,1,
0.1,1,0.1,-1,
0.1,0.1,1,-1,
0.1,0.1,0.1,1,
};
#endif
#if 0 /* ----- test NEW and FREE ---- */
NVCELL *tmpcell=NULL;
NVLAYER *tmplayer=NULL;
NVNET *nnet=NULL;
int k=0;
while(1) {
k++;
tmpcell=new_nvcell(100, NULL, NULL, NULL, 0, func_TanSigmoid);
tmplayer=new_nvlayer(10,tmpcell);
free_nvcell(tmpcell);
free_nvlayer(tmplayer);
nnet=new_nvnet(10000);
free_nvnet(nnet);
// printf(" ------ %d ------\n",k);
usleep(10000);
}
#endif
double data_input[3];
do { /* test while */
/* <<<<<<<<<<<<<<<<< Create Neuron Net >>>>>>>>>>>>> */
/* 1. create an input nvlayer */
NVCELL *wi_tempcell=new_nvcell(wi_inpnum,NULL,data_input,NULL,0, func_TanSigmoid); /* input cell */
NVLAYER *wi_layer=new_nvlayer(wi_cellnum,wi_tempcell,false);
/* 2. create a mid nvlayer */
NVCELL *wm_tempcell=new_nvcell(wm_inpnum,wi_layer->nvcells,NULL,NULL,0,func_TanSigmoid);//sigmoid); /* input cell */
NVLAYER *wm_layer=new_nvlayer(wm_cellnum,wm_tempcell,false);
/* 3. create an output nvlayer */
NVCELL *wo_tempcell=new_nvcell(wo_inpnum, wm_layer->nvcells, NULL,NULL,0,func_TanSigmoid);//ReLU);//sigmoid); /* input cell */
NVLAYER *wo_layer=new_nvlayer(wo_cellnum,wo_tempcell,false);
/* 4. create an nerve net */
NVNET *nnet=new_nvnet(3); /* 3 layers inside */
nnet->nvlayers[0]=wi_layer;
nnet->nvlayers[1]=wm_layer;
nnet->nvlayers[2]=wo_layer;
/* 5. init params */
nvnet_init_params(nnet);
/* <<<<<<<<<<<<<<<<< NNC Learning Process >>>>>>>>>>>>> */
// nnc_set_param(0.05);//0.03); /* set learn rate */
err=10; /* give an init value to trigger while() */
printf("NN model starts learning ...\n");
count=0;
gradient_checked=false;
while(err>ERR_LIMIT)
{
/* 1. reset batch err */
err=0.0;
/* 2. batch learning */
for(i=0; i<ns; i++)
{
/* 1. update data_input */
memcpy(data_input, pin+4*i, 3*sizeof(double));
/* 2. nvnet feed forward */
err += nvnet_feed_forward(nnet, pin+(3+i*4),func_lossMSE);
/* 3. nvnet feed backward, update cell->derrs */
nvnet_feed_backward(nnet);
#if 1
/* check gradient just before updating params */
if( !gradient_checked && count>10 && i==3 ) {
if( nvnet_check_gradient(nnet, pin+(3+i*4), func_lossMSE) < 0) {
printf("Gradient_check failed!\n");
exit(-1);
}
else {
gradient_checked=true;
}
nvnet_print_params(nnet);
//sleep(2);
}
#endif
/* 4. update params after feedback computation */
nvnet_update_params(nnet, 0.01);
//nvnet_mmtupdate_params(nnet, 0.01);
}
count++;
if( (count&(32-1)) == 0)
printf(" %dth learning, err=%0.8f \n",count, err);
}
printf(" %dth learning, err=%0.8f \n",count, err);
printf("Finish %d times batch learning!. \n",count);
/* print params */
nvnet_print_params(nnet);
/* ---- check gradient again ---- */
i=2;
memcpy(data_input, pin+4*i, 3*sizeof(double));
nvnet_feed_forward(nnet, pin+(3+i*4),func_lossMSE);
nvnet_feed_backward(nnet);
nvnet_check_gradient(nnet, pin+(3+i*4), func_lossMSE);
/* <<<<<<<<<<<<<<<<< Test Learned NN Model >>>>>>>>>>>>> */
printf("\n----------- Test learned NN Model -----------\n");
for(i=0;i<ns;i++)
{
/* update data_input */
memcpy(data_input, pin+4*i,wi_inpnum*sizeof(double));
/* feed forward wi->wm->wo layer */
nvlayer_feed_forward(wi_layer);
nvlayer_feed_forward(wm_layer);
nvlayer_feed_forward(wo_layer);
/* print result */
printf("Input: ");
for(j=0;j<wi_inpnum;j++)
printf("%lf ",data_input[j]);
printf("\n");
printf("output: %lf \n",wo_layer->nvcells[0]->dout);
}
loop++;
printf("----------------- loop=%d ------------------\n",loop);
sleep(1);
/* <<<<<<<<<<<<<<<<< Destroy NN Model >>>>>>>>>>>>> */
free_nvcell(wi_tempcell);
free_nvcell(wm_tempcell);
free_nvcell(wo_tempcell);
/*
free_nvlayer(wi_layer);
free_nvlayer(wm_layer);
free_nvlayer(wo_layer);
*/
free_nvnet(nnet); /* free nvnet also free its nvlayers and nvcells inside */
usleep(100000);
} while(1); /* end test while */
return 0;
}