-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathtest_mscclpp.py
660 lines (562 loc) · 24 KB
/
test_mscclpp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from concurrent.futures import ThreadPoolExecutor
import os
import time
import threading
import cupy as cp
import numpy as np
import netifaces as ni
import pytest
from mscclpp import (
ErrorCode,
Error,
DataType,
EndpointConfig,
ExecutionPlan,
Executor,
Fifo,
Host2DeviceSemaphore,
Host2HostSemaphore,
ProxyService,
SmDevice2DeviceSemaphore,
TcpBootstrap,
Transport,
is_nvls_supported,
npkit,
)
import mscclpp.comm as mscclpp_comm
from mscclpp.utils import KernelBuilder, GpuBuffer, pack
from ._cpp import _ext
from .mscclpp_mpi import MpiGroup, parametrize_mpi_groups, mpi_group
ethernet_interface_name = "eth0"
def all_ranks_on_the_same_node(mpi_group: MpiGroup):
if (ethernet_interface_name in ni.interfaces()) is False:
pytest.skip(f"{ethernet_interface_name} is not an interface to use on this node")
my_ip = ni.ifaddresses(ethernet_interface_name)[ni.AF_INET][0]["addr"]
root_ip = mpi_group.comm.bcast(my_ip, 0)
last_rank_ip = mpi_group.comm.bcast(my_ip, mpi_group.comm.size - 1)
return last_rank_ip == root_ip
@parametrize_mpi_groups(2, 4, 8, 16)
@pytest.mark.parametrize("ifIpPortTrio", [f"{ethernet_interface_name}:localhost:50000", ethernet_interface_name, ""])
def test_group_with_ip(mpi_group: MpiGroup, ifIpPortTrio: str):
if (ethernet_interface_name in ni.interfaces()) is False:
pytest.skip(f"{ethernet_interface_name} is not an interface to use on this node")
my_ip = ni.ifaddresses(ethernet_interface_name)[ni.AF_INET][0]["addr"]
root_ip = mpi_group.comm.bcast(my_ip, 0)
if ifIpPortTrio == ethernet_interface_name:
ifIpPortTrio += ":" + root_ip + ":50000" # some random port
if all_ranks_on_the_same_node(mpi_group) is False and "localhost" in ifIpPortTrio:
# ranks are on different nodes
pytest.skip("this case is not supported as localhost will be different for different nodes")
group = mscclpp_comm.CommGroup(mpi_group.comm, ifIpPortTrio)
nelem = 1024
memory = np.zeros(nelem, dtype=np.int32)
nelemPerRank = nelem // group.nranks
memory[(nelemPerRank * group.my_rank) : (nelemPerRank * (group.my_rank + 1))] = group.my_rank + 1
memory_expected = np.zeros_like(memory)
for rank in range(group.nranks):
memory_expected[(nelemPerRank * rank) : (nelemPerRank * (rank + 1))] = rank + 1
for rank in range(group.nranks):
if rank == group.my_rank:
continue
group.send(memory[(nelemPerRank * group.my_rank) : (nelemPerRank * (group.my_rank + 1))], rank, 0)
for rank in range(group.nranks):
if rank == group.my_rank:
continue
group.recv(memory[(nelemPerRank * rank) : (nelemPerRank * (rank + 1))], rank, 0)
assert np.array_equal(memory, memory_expected)
@parametrize_mpi_groups(2, 4, 8, 16)
def test_bootstrap_init_gil_release(mpi_group: MpiGroup):
bootstrap = TcpBootstrap.create(mpi_group.comm.rank, mpi_group.comm.size)
uniq_id = None
if mpi_group.comm.rank == 0:
# similar to NCCL's unique id
uniq_id = bootstrap.create_unique_id()
uniq_id_global = mpi_group.comm.bcast(uniq_id, 0)
if mpi_group.comm.rank == 0:
# rank 0 never initializes the bootstrap, making other ranks block
pass
else:
check_list = []
def check_target():
check_list.append("this thread could run.")
def init_target():
try:
# expected to raise a timeout after 3 seconds
bootstrap.initialize(uniq_id_global, 3)
except:
pass
init_thread = threading.Thread(target=init_target)
check_thread = threading.Thread(target=check_target)
init_thread.start()
time.sleep(0.1)
# check that the check thread is not blocked
s = time.time()
check_thread.start()
check_thread.join()
e = time.time()
assert e - s < 0.1
assert len(check_list) == 1
init_thread.join()
mpi_group.comm.barrier()
def create_connection(group: mscclpp_comm.CommGroup, transport: str):
if transport == "NVLS":
all_ranks = list(range(group.nranks))
tran = Transport.Nvls
connection = group.make_connection(all_ranks, tran)
return connection
remote_nghrs = list(range(group.nranks))
remote_nghrs.remove(group.my_rank)
if transport == "NVLink":
tran = Transport.CudaIpc
elif transport == "IB":
tran = group.my_ib_device(group.my_rank % 8)
else:
assert False
connections = group.make_connection(remote_nghrs, tran)
return connections
def create_group_and_connection(mpi_group: MpiGroup, transport: str):
if (transport == "NVLink" or transport == "NVLS") and all_ranks_on_the_same_node(mpi_group) is False:
pytest.skip("cannot use nvlink/nvls for cross node")
group = mscclpp_comm.CommGroup(mpi_group.comm)
try:
connection = create_connection(group, transport)
except Error as e:
if transport == "IB" and e.args[0] == ErrorCode.InvalidUsage:
pytest.skip("IB not supported on this node")
raise
return group, connection
@parametrize_mpi_groups(2, 4, 8, 16)
@pytest.mark.parametrize("transport", ["IB", "NVLink"])
def test_group_with_connections(mpi_group: MpiGroup, transport: str):
create_group_and_connection(mpi_group, transport)
@parametrize_mpi_groups(1)
@pytest.mark.parametrize("nelem", [2**i for i in [0, 10, 15, 20]])
@pytest.mark.parametrize("dtype", [cp.float32, cp.float16])
def test_gpu_buffer(mpi_group: MpiGroup, nelem: int, dtype: cp.dtype):
memory = GpuBuffer(nelem, dtype=dtype)
assert memory.shape == (nelem,)
assert memory.dtype == dtype
assert memory.itemsize == cp.dtype(dtype).itemsize
assert memory.nbytes == nelem * cp.dtype(dtype).itemsize
assert memory.data.ptr != 0
assert memory.data.mem.ptr != 0
assert memory.data.mem.size >= nelem * cp.dtype(dtype).itemsize
@parametrize_mpi_groups(2, 4, 8, 16)
@pytest.mark.parametrize("transport", ["IB", "NVLink"])
@pytest.mark.parametrize("nelem", [2**i for i in [10, 15, 20]])
def test_connection_write(mpi_group: MpiGroup, transport: Transport, nelem: int):
group, connections = create_group_and_connection(mpi_group, transport)
memory = GpuBuffer(nelem, dtype=cp.int32)
nelemPerRank = nelem // group.nranks
sizePerRank = nelemPerRank * memory.itemsize
memory[(nelemPerRank * group.my_rank) : (nelemPerRank * (group.my_rank + 1))] = group.my_rank + 1
memory_expected = cp.zeros_like(memory)
for rank in range(group.nranks):
memory_expected[(nelemPerRank * rank) : (nelemPerRank * (rank + 1))] = rank + 1
group.barrier()
all_reg_memories = group.register_tensor_with_connections(memory, connections)
for rank in connections:
connections[rank].write(
all_reg_memories[rank],
sizePerRank * group.my_rank,
all_reg_memories[group.my_rank],
sizePerRank * group.my_rank,
sizePerRank,
)
poll_for = 100
for i in range(poll_for):
all_correct = cp.array_equal(memory, memory_expected)
if all_correct:
break
time.sleep(0.1)
for conn in connections:
connections[conn].flush()
cp.cuda.runtime.deviceSynchronize()
group.barrier()
assert all_correct
@parametrize_mpi_groups(2, 4, 8, 16)
@pytest.mark.parametrize("transport", ["IB", "NVLink"])
@pytest.mark.parametrize("nelem", [2**i for i in [10, 15, 20, 27]])
@pytest.mark.parametrize("device", ["cuda", "cpu"])
def test_connection_write_and_signal(mpi_group: MpiGroup, transport: Transport, nelem: int, device: str):
# this test starts with a random tensor on rank 0 and rotates it all the way through all ranks
# and finally, comes back to rank 0 to make sure it matches all the original values
if device == "cpu" and transport == "NVLink":
pytest.skip("nvlink doesn't work with host allocated memory")
group, connections = create_group_and_connection(mpi_group, transport)
xp = cp if device == "cuda" else np
if group.my_rank == 0:
memory = xp.random.randn(nelem)
memory = memory.astype(xp.float32)
memory_expected = memory.copy()
else:
memory = xp.zeros(nelem, dtype=xp.float32)
if device == "cuda":
cp.cuda.runtime.deviceSynchronize()
signal_memory = xp.zeros(1, dtype=xp.int64)
all_reg_memories = group.register_tensor_with_connections(memory, connections)
all_signal_memories = group.register_tensor_with_connections(signal_memory, connections)
next_rank = (group.my_rank + 1) % group.nranks
bufferSize = nelem * memory.itemsize
dummy_memory_on_cpu = np.zeros(1, dtype=np.int64)
signal_val = 123
if group.my_rank != 0:
while signal_memory[0] != signal_val:
time.sleep(0.1)
connections[next_rank].write(all_reg_memories[next_rank], 0, all_reg_memories[group.my_rank], 0, bufferSize)
connections[next_rank].flush()
if group.my_rank == 0:
memory[:] = 0
if device == "cuda":
cp.cuda.runtime.deviceSynchronize()
connections[next_rank].update_and_sync(
all_signal_memories[next_rank], 0, dummy_memory_on_cpu.ctypes.data, signal_val
)
all_correct = False
if group.my_rank == 0:
while signal_memory[0] != signal_val:
time.sleep(0.1)
all_correct = cp.array_equal(memory, memory_expected)
group.barrier()
all_correct = mpi_group.comm.bcast(all_correct, 0)
assert all_correct
@parametrize_mpi_groups(2, 4, 8, 16)
def test_h2h_semaphores(mpi_group: MpiGroup):
group, connections = create_group_and_connection(mpi_group, "IB")
semaphores = group.make_semaphore(connections, Host2HostSemaphore)
for rank in connections:
semaphores[rank].signal()
for rank in connections:
semaphores[rank].wait()
group.barrier()
@parametrize_mpi_groups(2, 4, 8, 16)
def test_h2h_semaphores_gil_release(mpi_group: MpiGroup):
group, connections = create_group_and_connection(mpi_group, "IB")
semaphores = group.make_semaphore(connections, Host2HostSemaphore)
def target_wait(sems, conns):
for rank in conns:
sems[rank].wait(-1)
def target_signal(sems, conns):
# sleep 1 sec to let target_wait() starts a bit earlier
time.sleep(1)
# if wait() doesn't release GIL, this will block forever
for rank in conns:
sems[rank].signal()
wait_thread = threading.Thread(target=target_wait, args=(semaphores, connections))
signal_thread = threading.Thread(target=target_signal, args=(semaphores, connections))
wait_thread.start()
signal_thread.start()
signal_thread.join()
wait_thread.join()
group.barrier()
@parametrize_mpi_groups(8)
@pytest.mark.skipif(is_nvls_supported() is False, reason="NVLS is not supported")
def test_nvls_connection(mpi_group: MpiGroup):
if all_ranks_on_the_same_node(mpi_group) is False:
pytest.skip("cannot use nvls for cross node")
group = mscclpp_comm.CommGroup(mpi_group.comm)
all_ranks = list(range(group.nranks))
endpoint = EndpointConfig(Transport.Nvls, 2**22)
nvls_connection = group.make_connection(all_ranks, endpoint)
mem_handle1 = nvls_connection.allocate_bind_memory(2**21)
mem_handle2 = nvls_connection.allocate_bind_memory(2**21)
with pytest.raises(Exception):
mem_handle3 = nvls_connection.allocate_bind_memory(2**21)
# the memory is freed on the destructor of mem_handle2
mem_handle2 = None
mem_handle3 = nvls_connection.allocate_bind_memory(2**21)
class MscclppKernel:
def __init__(
self,
test_name,
my_rank=None,
nranks=None,
semaphore_or_channels=None,
tensor=None,
use_packet=False,
scratch=None,
fifo=None,
nvls_mem_handle=None,
nvls_buffer_size=None,
):
file_dir = os.path.dirname(os.path.abspath(__file__))
if test_name == "h2d_semaphore":
self._kernel = KernelBuilder(
file="h2d_semaphore_test.cu", kernel_name="h2d_semaphore", file_dir=file_dir
).get_compiled_kernel()
self.nblocks = 1
self.nthreads = nranks
elif test_name == "d2d_semaphore":
self._kernel = KernelBuilder(
file="d2d_semaphore_test.cu", kernel_name="d2d_semaphore", file_dir=file_dir
).get_compiled_kernel()
self.nblocks = 1
self.nthreads = nranks
elif test_name == "sm_channel":
self._kernel = KernelBuilder(
file="sm_channel_test.cu", kernel_name="sm_channel", file_dir=file_dir
).get_compiled_kernel()
self.nblocks = nranks
self.nthreads = 1024
elif test_name == "fifo":
self._kernel = KernelBuilder(
file="fifo_test.cu", kernel_name="fifo", file_dir=file_dir
).get_compiled_kernel()
self.nblocks = 1
self.nthreads = 1
elif test_name == "proxy":
self._kernel = KernelBuilder(
file="proxy_test.cu", kernel_name="proxy", file_dir=file_dir
).get_compiled_kernel()
self.nblocks = 1
self.nthreads = nranks
elif test_name == "proxy_channel":
self._kernel = KernelBuilder(
file="proxy_channel_test.cu", kernel_name="proxy_channel", file_dir=file_dir
).get_compiled_kernel()
self.nblocks = 1
self.nthreads = 1024
elif test_name == "nvls":
self._kernel = KernelBuilder(
file="nvls_test.cu", kernel_name="nvls_test", file_dir=file_dir
).get_compiled_kernel()
self.nblocks = 64
self.nthreads = 1024
else:
assert False
self.params = b""
if semaphore_or_channels != None:
first_arg = next(iter(semaphore_or_channels.values()))
size_of_semaphore_or_channels = len(first_arg.device_handle().raw)
device_handles = []
for rank in range(nranks):
if rank == my_rank:
device_handles.append(
bytes(size_of_semaphore_or_channels)
) # just zeros for semaphores that do not exist
else:
device_handles.append(semaphore_or_channels[rank].device_handle().raw)
# keep a reference to the device handles so that they don't get garbage collected
self._d_semaphore_or_channels = cp.asarray(memoryview(b"".join(device_handles)), dtype=cp.uint8)
if test_name in ["h2d_semaphore", "d2d_semaphore", "sm_channel", "proxy_channel"]:
self.params += pack(self._d_semaphore_or_channels, my_rank, nranks)
if test_name == "sm_channel":
self.params += pack(tensor.size, use_packet)
if test_name == "proxy_channel":
self.params += pack(tensor, scratch, tensor.size, use_packet)
elif test_name == "fifo":
self.params = fifo.device_handle().raw
elif test_name == "proxy":
self.params = pack(my_rank, nranks) + fifo.raw + pack(self._d_semaphore_or_channels)
elif test_name == "nvls":
self.params = (
nvls_mem_handle.device_handle().raw
+ pack(self._d_semaphore_or_channels)
+ pack(my_rank, nranks, nvls_buffer_size)
)
def __call__(self):
return self._kernel.launch_kernel(self.params, self.nblocks, self.nthreads, 0, None)
@parametrize_mpi_groups(2, 4, 8, 16)
@pytest.mark.parametrize("transport", ["NVLink", "IB"])
def test_h2d_semaphores(mpi_group: MpiGroup, transport: str):
def signal(semaphores):
for rank in semaphores:
semaphores[rank].signal()
group, connections = create_group_and_connection(mpi_group, transport)
semaphores = group.make_semaphore(connections, Host2DeviceSemaphore)
kernel = MscclppKernel("h2d_semaphore", group.my_rank, group.nranks, semaphores)
kernel()
# workaround: use a separate thread to to let cudaMemcpyAsync run concurrently with the kernel
with ThreadPoolExecutor(max_workers=1) as executor:
executor.submit(signal, semaphores)
cp.cuda.runtime.deviceSynchronize()
group.barrier()
@parametrize_mpi_groups(2, 4, 8, 16)
def test_d2d_semaphores(mpi_group: MpiGroup):
group, connections = create_group_and_connection(mpi_group, "NVLink")
semaphores = group.make_semaphore(connections, SmDevice2DeviceSemaphore)
group.barrier()
kernel = MscclppKernel("d2d_semaphore", group.my_rank, group.nranks, semaphores)
kernel()
cp.cuda.runtime.deviceSynchronize()
group.barrier()
@parametrize_mpi_groups(2, 4, 8, 16)
@pytest.mark.parametrize("nelem", [2**i for i in [10, 15, 20]])
@pytest.mark.parametrize("use_packet", [False, True])
def test_sm_channels(mpi_group: MpiGroup, nelem: int, use_packet: bool):
group, connections = create_group_and_connection(mpi_group, "NVLink")
memory = GpuBuffer(nelem, dtype=cp.int32)
if use_packet:
scratch = GpuBuffer(nelem * 2, dtype=cp.int32)
else:
scratch = None
nelemPerRank = nelem // group.nranks
memory[(nelemPerRank * group.my_rank) : (nelemPerRank * (group.my_rank + 1))] = group.my_rank + 1
memory_expected = cp.zeros_like(memory)
for rank in range(group.nranks):
memory_expected[(nelemPerRank * rank) : (nelemPerRank * (rank + 1))] = rank + 1
if use_packet:
channels = group.make_sm_channels_with_scratch(memory, scratch, connections)
else:
channels = group.make_sm_channels(memory, connections)
kernel = MscclppKernel("sm_channel", group.my_rank, group.nranks, channels, memory, use_packet, scratch)
group.barrier()
kernel()
cp.cuda.runtime.deviceSynchronize()
group.barrier()
assert cp.array_equal(memory, memory_expected)
@parametrize_mpi_groups(2, 4, 8, 16)
def test_fifo(
mpi_group: MpiGroup,
):
fifo = Fifo()
kernel = MscclppKernel("fifo", fifo=fifo)
kernel()
poll_for = 100
for _ in range(poll_for):
trigger = fifo.poll()
if trigger.fst == 123:
return
time.sleep(0.1)
assert False
@parametrize_mpi_groups(2, 4, 8, 16)
@pytest.mark.parametrize("nelem", [2**i for i in [10, 15, 20]])
@pytest.mark.parametrize("transport", ["IB", "NVLink"])
def test_proxy(mpi_group: MpiGroup, nelem: int, transport: str):
group, connections = create_group_and_connection(mpi_group, transport)
memory = GpuBuffer(nelem, dtype=cp.int32)
nelemPerRank = nelem // group.nranks
nelemPerRank * memory.itemsize
memory[(nelemPerRank * group.my_rank) : (nelemPerRank * (group.my_rank + 1))] = group.my_rank + 1
memory_expected = cp.zeros_like(memory)
for rank in range(group.nranks):
memory_expected[(nelemPerRank * rank) : (nelemPerRank * (rank + 1))] = rank + 1
group.barrier()
all_reg_memories = group.register_tensor_with_connections(memory, connections)
semaphores = group.make_semaphore(connections, Host2DeviceSemaphore)
list_conn = []
list_sem = []
list_reg_mem = []
first_conn = next(iter(connections.values()))
first_sem = next(iter(semaphores.values()))
for rank in range(group.nranks):
if rank in connections:
list_conn.append(connections[rank])
list_sem.append(semaphores[rank])
else:
list_conn.append(first_conn) # just for simplicity of indexing
list_sem.append(first_sem)
list_reg_mem.append(all_reg_memories[rank])
proxy = _ext.MyProxyService(group.my_rank, group.nranks, nelem * memory.itemsize, list_conn, list_reg_mem, list_sem)
fifo_device_handle = proxy.fifo_device_handle()
kernel = MscclppKernel(
"proxy", my_rank=group.my_rank, nranks=group.nranks, semaphore_or_channels=semaphores, fifo=fifo_device_handle
)
proxy.start()
group.barrier()
kernel()
cp.cuda.runtime.deviceSynchronize()
proxy.stop()
group.barrier()
assert cp.array_equal(memory, memory_expected)
@parametrize_mpi_groups(2, 4, 8, 16)
@pytest.mark.parametrize("nelem", [2**i for i in [10, 15, 20]])
@pytest.mark.parametrize("transport", ["NVLink", "IB"])
@pytest.mark.parametrize("use_packet", [False, True])
def test_proxy_channel(mpi_group: MpiGroup, nelem: int, transport: str, use_packet: bool):
group, connections = create_group_and_connection(mpi_group, transport)
memory = GpuBuffer(nelem, dtype=cp.int32)
if use_packet:
scratch = GpuBuffer(nelem * 2, dtype=cp.int32)
else:
scratch = GpuBuffer(1, dtype=cp.int32) # just so that we can pass a valid ptr
nelemPerRank = nelem // group.nranks
nelemPerRank * memory.itemsize
memory[(nelemPerRank * group.my_rank) : (nelemPerRank * (group.my_rank + 1))] = group.my_rank + 1
memory_expected = cp.zeros_like(memory)
for rank in range(group.nranks):
memory_expected[(nelemPerRank * rank) : (nelemPerRank * (rank + 1))] = rank + 1
group.barrier()
proxy_service = ProxyService()
if use_packet:
memory_to_register = scratch
else:
memory_to_register = memory
channels = group.make_proxy_channels(proxy_service, memory_to_register, connections)
kernel = MscclppKernel(
"proxy_channel",
my_rank=group.my_rank,
nranks=group.nranks,
semaphore_or_channels=channels,
tensor=memory,
use_packet=use_packet,
scratch=scratch,
)
proxy_service.start_proxy()
group.barrier()
kernel()
cp.cuda.runtime.deviceSynchronize()
proxy_service.stop_proxy()
group.barrier()
assert cp.array_equal(memory, memory_expected)
@parametrize_mpi_groups(4, 8)
@pytest.mark.skipif(is_nvls_supported() is False, reason="NVLS is not supported")
def test_nvls(mpi_group: MpiGroup):
group, nvls_connection = create_group_and_connection(mpi_group, "NVLS")
nbytes = 2**21
mem_handle = nvls_connection.allocate_bind_memory(nbytes)
nvlinks_connections = create_connection(group, "NVLink")
semaphores = group.make_semaphore(nvlinks_connections, SmDevice2DeviceSemaphore)
kernel = MscclppKernel(
"nvls",
my_rank=group.my_rank,
nranks=group.nranks,
nvls_mem_handle=mem_handle,
nvls_buffer_size=nbytes,
semaphore_or_channels=semaphores,
)
kernel()
cp.cuda.runtime.deviceSynchronize()
group.barrier()
@parametrize_mpi_groups(2)
@pytest.mark.parametrize("filename", ["allreduce.json", "allreduce_packet.json"])
def test_executor(mpi_group: MpiGroup, filename: str):
if all_ranks_on_the_same_node(mpi_group) is False:
pytest.skip("algo not support cross node")
project_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
mscclpp_group = mscclpp_comm.CommGroup(mpi_group.comm)
executor = Executor(mscclpp_group.communicator)
npkit_dump_dir = os.getenv("NPKIT_DUMP_DIR")
if npkit_dump_dir is not None:
npkit.init(mscclpp_group.my_rank)
execution_plan = ExecutionPlan(os.path.join(project_dir, "test", "execution-files", filename))
nelems = 1024 * 1024
cp.random.seed(42)
buffer = cp.random.random(nelems).astype(cp.float16)
sub_arrays = cp.split(buffer, mpi_group.comm.size)
nelems_per_rank = int(nelems / mpi_group.comm.size)
sendbuf = cp.empty(nelems_per_rank).astype(cp.float16)
for i in range(nelems_per_rank):
sendbuf[i] = sub_arrays[mpi_group.comm.rank][i]
expected = cp.zeros_like(sendbuf)
for i in range(mpi_group.comm.size):
expected += sub_arrays[i]
mscclpp_group.barrier()
stream = cp.cuda.Stream(non_blocking=True)
executor.execute(
mpi_group.comm.rank,
sendbuf.data.ptr,
sendbuf.data.ptr,
sendbuf.nbytes,
sendbuf.nbytes,
DataType.float16,
execution_plan,
stream.ptr,
)
stream.synchronize()
assert cp.allclose(sendbuf, expected, atol=1e-3 * mpi_group.comm.size)
if npkit_dump_dir is not None:
npkit.dump(npkit_dump_dir)
npkit.shutdown()