|
56 | 56 | # instance_norm5
|
57 | 57 | instance_norm5_scale = dml.input_tensor(builder, 3, dml.TensorDesc(data_type, [1,16,1,1]))
|
58 | 58 | instance_norm5_bias = dml.input_tensor(builder, 4, dml.TensorDesc(data_type, flags, [1,16,1,1]))
|
59 |
| -instance_norm5 = dml.mean_variance_normalization(conv4, instance_norm5_scale, instance_norm5_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
| 59 | +instance_norm5 = dml.mean_variance_normalization(conv4, instance_norm5_scale, instance_norm5_bias, [0,2,3], True, True, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
60 | 60 |
|
61 | 61 | # conv7
|
62 | 62 | conv7_filter = dml.input_tensor(builder, 5, dml.TensorDesc(data_type, flags, [32,16,3,3]))
|
|
66 | 66 | # instance_norm8
|
67 | 67 | instance_norm8_scale = dml.input_tensor(builder, 7, dml.TensorDesc(data_type, [1,32,1,1]))
|
68 | 68 | instance_norm8_bias = dml.input_tensor(builder, 8, dml.TensorDesc(data_type, flags, [1,32,1,1]))
|
69 |
| -instance_norm8 = dml.mean_variance_normalization(conv7, instance_norm8_scale, instance_norm8_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
| 69 | +instance_norm8 = dml.mean_variance_normalization(conv7, instance_norm8_scale, instance_norm8_bias, [0,2,3], True, True, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
70 | 70 |
|
71 | 71 | # conv10
|
72 | 72 | conv10_filter = dml.input_tensor(builder, 9, dml.TensorDesc(data_type, flags, [64,32,3,3]))
|
|
76 | 76 | # instance_norm11
|
77 | 77 | instance_norm11_scale = dml.input_tensor(builder, 11, dml.TensorDesc(data_type, [1,64,1,1]))
|
78 | 78 | instance_norm11_bias = dml.input_tensor(builder, 12, dml.TensorDesc(data_type, flags, [1,64,1,1]))
|
79 |
| -instance_norm11 = dml.mean_variance_normalization(conv10, instance_norm11_scale, instance_norm11_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
| 79 | +instance_norm11 = dml.mean_variance_normalization(conv10, instance_norm11_scale, instance_norm11_bias, [0,2,3], True, True, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
80 | 80 |
|
81 | 81 | # conv16
|
82 | 82 | conv16_filter = dml.input_tensor(builder, 13, dml.TensorDesc(data_type, flags, [64,64,3,3]))
|
|
86 | 86 | # instance_norm17
|
87 | 87 | instance_norm17_scale = dml.input_tensor(builder, 15, dml.TensorDesc(data_type, [1,64,1,1]))
|
88 | 88 | instance_norm17_bias = dml.input_tensor(builder, 16, dml.TensorDesc(data_type, flags, [1,64,1,1]))
|
89 |
| -instance_norm17 = dml.mean_variance_normalization(conv16, instance_norm17_scale, instance_norm17_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
| 89 | +instance_norm17 = dml.mean_variance_normalization(conv16, instance_norm17_scale, instance_norm17_bias, [0,2,3], True, True, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
90 | 90 |
|
91 | 91 | # conv19
|
92 | 92 | conv19_filter = dml.input_tensor(builder, 17, dml.TensorDesc(data_type, flags, [64,64,3,3]))
|
|
96 | 96 | # instance_norm15
|
97 | 97 | instance_norm15_scale = dml.input_tensor(builder, 19, dml.TensorDesc(data_type, [1,64,1,1]))
|
98 | 98 | instance_norm15_bias = dml.input_tensor(builder, 20, dml.TensorDesc(data_type, flags, [1,64,1,1]))
|
99 |
| -instance_norm15 = dml.mean_variance_normalization(conv19, instance_norm15_scale, instance_norm15_bias, [0,2,3], 1, 0.000009999999747378752) |
| 99 | +instance_norm15 = dml.mean_variance_normalization(conv19, instance_norm15_scale, instance_norm15_bias, [0,2,3], True, True, 0.000009999999747378752) |
100 | 100 |
|
101 | 101 | # crop21
|
102 | 102 | crop21 = dml.slice(instance_norm11,[0,0,2,2],[1,64,196,196],[1,1,1,1])
|
|
112 | 112 | # instance_norm27
|
113 | 113 | instance_norm27_scale = dml.input_tensor(builder, 23, dml.TensorDesc(data_type, [1,64,1,1]))
|
114 | 114 | instance_norm27_bias = dml.input_tensor(builder, 24, dml.TensorDesc(data_type, flags, [1,64,1,1]))
|
115 |
| -instance_norm27 = dml.mean_variance_normalization(conv26, instance_norm27_scale, instance_norm27_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
| 115 | +instance_norm27 = dml.mean_variance_normalization(conv26, instance_norm27_scale, instance_norm27_bias, [0,2,3], True, True, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
116 | 116 |
|
117 | 117 | # conv29
|
118 | 118 | conv29_filter = dml.input_tensor(builder, 25, dml.TensorDesc(data_type, flags, [64,64,3,3]))
|
|
122 | 122 | # instance_norm25
|
123 | 123 | instance_norm25_scale = dml.input_tensor(builder, 27, dml.TensorDesc(data_type, [1,64,1,1]))
|
124 | 124 | instance_norm25_bias = dml.input_tensor(builder, 28, dml.TensorDesc(data_type, flags, [1,64,1,1]))
|
125 |
| -instance_norm25 = dml.mean_variance_normalization(conv29, instance_norm25_scale, instance_norm25_bias, [0,2,3], 1, 0.000009999999747378752) |
| 125 | +instance_norm25 = dml.mean_variance_normalization(conv29, instance_norm25_scale, instance_norm25_bias, [0,2,3], True, True, 0.000009999999747378752) |
126 | 126 |
|
127 | 127 | # crop21
|
128 | 128 | crop31 = dml.slice(add,[0,0,2,2],[1,64,196-2-2,196-2-2],[1,1,1,1])
|
|
138 | 138 | # instance_norm37
|
139 | 139 | instance_norm37_scale = dml.input_tensor(builder, 31, dml.TensorDesc(data_type, [1,64,1,1]))
|
140 | 140 | instance_norm37_bias = dml.input_tensor(builder, 32, dml.TensorDesc(data_type, flags, [1,64,1,1]))
|
141 |
| -instance_norm37 = dml.mean_variance_normalization(conv36, instance_norm37_scale, instance_norm37_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
| 141 | +instance_norm37 = dml.mean_variance_normalization(conv36, instance_norm37_scale, instance_norm37_bias, [0,2,3], True, True, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
142 | 142 |
|
143 | 143 | # conv39
|
144 | 144 | conv39_filter = dml.input_tensor(builder, 33, dml.TensorDesc(data_type, flags, [64,64,3,3]))
|
|
148 | 148 | # instance_norm35
|
149 | 149 | instance_norm35_scale = dml.input_tensor(builder, 35, dml.TensorDesc(data_type, [1,64,1,1]))
|
150 | 150 | instance_norm35_bias = dml.input_tensor(builder, 36, dml.TensorDesc(data_type, flags, [1,64,1,1]))
|
151 |
| -instance_norm35 = dml.mean_variance_normalization(conv39, instance_norm35_scale, instance_norm35_bias, [0,2,3], 1, 0.000009999999747378752) |
| 151 | +instance_norm35 = dml.mean_variance_normalization(conv39, instance_norm35_scale, instance_norm35_bias, [0,2,3], True, True, 0.000009999999747378752) |
152 | 152 |
|
153 | 153 | # crop41
|
154 | 154 | crop41 = dml.slice(add1,[0,0,2,2],[1, 64, 192-2-2, 192-2-2],[1,1,1,1])
|
|
164 | 164 | # instance_norm47
|
165 | 165 | instance_norm47_scale = dml.input_tensor(builder, 39, dml.TensorDesc(data_type, [1,64,1,1]))
|
166 | 166 | instance_norm47_bias = dml.input_tensor(builder, 40, dml.TensorDesc(data_type, flags, [1,64,1,1]))
|
167 |
| -instance_norm47 = dml.mean_variance_normalization(conv46, instance_norm47_scale, instance_norm47_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
| 167 | +instance_norm47 = dml.mean_variance_normalization(conv46, instance_norm47_scale, instance_norm47_bias, [0,2,3], True, True, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
168 | 168 |
|
169 | 169 | # conv49
|
170 | 170 | conv49_filter = dml.input_tensor(builder, 41, dml.TensorDesc(data_type, flags, [64,64,3,3]))
|
|
174 | 174 | # instance_norm45
|
175 | 175 | instance_norm45_scale = dml.input_tensor(builder, 43, dml.TensorDesc(data_type, [1,64,1,1]))
|
176 | 176 | instance_norm45_bias = dml.input_tensor(builder, 44, dml.TensorDesc(data_type, flags, [1,64,1,1]))
|
177 |
| -instance_norm45 = dml.mean_variance_normalization(conv49, instance_norm45_scale, instance_norm45_bias, [0,2,3], 1, 0.000009999999747378752) |
| 177 | +instance_norm45 = dml.mean_variance_normalization(conv49, instance_norm45_scale, instance_norm45_bias, [0,2,3], True, True, 0.000009999999747378752) |
178 | 178 |
|
179 | 179 | # crop51
|
180 | 180 | crop51 = dml.slice(instance_norm35,[0,0,2,2],[1, 64, 188-2-2, 188-2-2],[1,1,1,1])
|
|
190 | 190 | # instance_norm57
|
191 | 191 | instance_norm57_scale = dml.input_tensor(builder, 47, dml.TensorDesc(data_type, [1,64,1,1]))
|
192 | 192 | instance_norm57_bias = dml.input_tensor(builder, 48, dml.TensorDesc(data_type, flags, [1,64,1,1]))
|
193 |
| -instance_norm57 = dml.mean_variance_normalization(conv56, instance_norm57_scale, instance_norm57_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
| 193 | +instance_norm57 = dml.mean_variance_normalization(conv56, instance_norm57_scale, instance_norm57_bias, [0,2,3], True, True, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
194 | 194 |
|
195 | 195 | # conv59
|
196 | 196 | conv59_filter = dml.input_tensor(builder, 49, dml.TensorDesc(data_type, flags, [64,64,3,3]))
|
|
200 | 200 | # instance_norm55
|
201 | 201 | instance_norm55_scale = dml.input_tensor(builder, 51, dml.TensorDesc(data_type, [1,64,1,1]))
|
202 | 202 | instance_norm55_bias = dml.input_tensor(builder, 52, dml.TensorDesc(data_type, flags, [1,64,1,1]))
|
203 |
| -instance_norm55 = dml.mean_variance_normalization(conv59, instance_norm55_scale, instance_norm55_bias, [0,2,3], 1, 0.000009999999747378752) |
| 203 | +instance_norm55 = dml.mean_variance_normalization(conv59, instance_norm55_scale, instance_norm55_bias, [0,2,3], True, True, 0.000009999999747378752) |
204 | 204 |
|
205 | 205 | # crop61
|
206 | 206 | crop61 = dml.slice(add3,[0,0,2,2],[1, 64, 184-2-2, 184-2-2],[1,1,1,1])
|
|
219 | 219 | # instance_norm65
|
220 | 220 | instance_norm65_scale = dml.input_tensor(builder, 55, dml.TensorDesc(data_type, [1,32,1,1]))
|
221 | 221 | instance_norm65_bias = dml.input_tensor(builder, 56, dml.TensorDesc(data_type, flags, [1,32,1,1]))
|
222 |
| -instance_norm65 = dml.mean_variance_normalization(crop63, instance_norm65_scale, instance_norm65_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
| 222 | +instance_norm65 = dml.mean_variance_normalization(crop63, instance_norm65_scale, instance_norm65_bias, [0,2,3], True, True, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
223 | 223 |
|
224 | 224 | # conv67
|
225 | 225 | conv67_filter = dml.input_tensor(builder, 57, dml.TensorDesc(data_type, flags, [32,16,3,3]))
|
|
232 | 232 | # instance_norm69
|
233 | 233 | instance_norm69_scale = dml.input_tensor(builder, 59, dml.TensorDesc(data_type, [1,16,1,1]))
|
234 | 234 | instance_norm69_bias = dml.input_tensor(builder, 60, dml.TensorDesc(data_type, flags, [1,16,1,1]))
|
235 |
| -instance_norm69 = dml.mean_variance_normalization(crop67, instance_norm69_scale, instance_norm69_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
| 235 | +instance_norm69 = dml.mean_variance_normalization(crop67, instance_norm69_scale, instance_norm69_bias, [0,2,3], True, True, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU)) |
236 | 236 |
|
237 | 237 | # conv71
|
238 | 238 | conv71_filter = dml.input_tensor(builder, 61, dml.TensorDesc(data_type, flags, [3,16,9,9]))
|
|
0 commit comments