@@ -30,7 +30,6 @@ format:
30
30
31
31
- ~ 2,300 R packages
32
32
- Review, testing, documentation
33
- - Genomics, transcriptomics, microbiomics, ...
34
33
35
34
``` {r}
36
35
#| label: bioc_packages
@@ -115,7 +114,7 @@ p1 <- ggplot(pkgs_date, aes(x = Date, y = N, fill = Field)) +
115
114
p1
116
115
```
117
116
118
- ## Data containers form the foundation {.smaller}
117
+ ## Data containers form the core {.smaller}
119
118
120
119
``` {r}
121
120
#| label: data_container
@@ -130,7 +129,7 @@ ellipse_data <- data.frame(
130
129
y = c(2, 1, 0), # Centers of ellipses
131
130
a = c(4, 3, 2), # Widths of ellipses
132
131
b = c(3, 2, 1), # Heights of ellipses
133
- label = c("COMMUNITY", "PACKAGES ", "DATA"), # Labels for each ellipse
132
+ label = c("COMMUNITY", "METHODS ", "DATA CONTAINER "), # Labels for each ellipse
134
133
label_y = c(4, 1.75, 0) # Adjusted vertical positions for labels
135
134
)
136
135
@@ -306,17 +305,17 @@ _Reduce overlapping efforts, improve interoperability, ensure sustainability._
306
305
307
306
- Extension to SummarizedExperiment
308
307
- Optimal for microbiome data
309
- - Links microbiome field to larger SE family
308
+ - Links microbiome field to larger SummarizedExperiment family
310
309
311
310
##
312
311
313
312
![ ] ( images/SE.png ) {fig-alt="SummarizedExperiment class" fig-align="center" width=10%}
314
313
315
- ## {transition="fade" transition-speed="slow"}
314
+ ##
316
315
317
316
![ ] ( images/paste-14DB8F76.png ) {fig-alt="TreeSummarizedExperiment class" fig-align="center" width=10%}
318
317
319
- ## MIcrobiome Analysis (mia) {transition="none"}
318
+ ## MIcrobiome Analysis (mia)
320
319
321
320
``` {r}
322
321
#| label: mia_stats
@@ -375,133 +374,8 @@ perc <- paste0(round(which(rownames(df) == "mia") / nrow(df), 3)*100, "%")
375
374
- Scalable & optimized for large datasets
376
375
- Comprehensive documentation
377
376
378
- _ Allows us to develop modular and efficient workflows_
377
+ _ Allows us to develop efficient microbiome data science workflows_
379
378
380
- ## {auto-animate="true"}
381
-
382
- ``` r
383
- # Load package
384
- library(mia )
385
- # Load example dataset
386
- data(" peerj13075" )
387
- tse <- peerj13075
388
- ```
389
-
390
- ``` {r}
391
- #| label: show_treese
392
-
393
-
394
- # Load package
395
- library(mia)
396
- # Load example dataset
397
- data("peerj13075")
398
- tse <- peerj13075
399
-
400
- tse
401
- ```
402
-
403
-
404
- ## {auto-animate="true"}
405
-
406
- ``` r
407
- # Agglomerate to genus level
408
- tse <- agglomerateByRank(tse , rank = " genus" )
409
- ```
410
-
411
- ## {auto-animate="true"}
412
-
413
- ``` r
414
- # Agglomerate to genus level
415
- tse <- agglomerateByRank(tse , rank = " genus" )
416
-
417
- # Add relative abundances
418
- tse <- transformAssay(tse , method = " relabundance" )
419
- ```
420
-
421
- ``` {r}
422
- #| label: show_transform
423
-
424
- # Agglomerate to genus level
425
- tse <- agglomerateByRank(tse, rank = "genus")
426
-
427
- # Add relative abundances
428
- tse <- transformAssay(tse, method = "relabundance")
429
- ```
430
-
431
- ## {auto-animate="true"}
432
-
433
- ``` r
434
- # Load visualization package
435
- library(miaViz )
436
- # Summarize abundance of top taxa
437
- plotAbundanceDensity(tse , assay.type = " relabundance" )
438
- ```
439
-
440
- ``` {r}
441
- #| label: show_prevalence
442
-
443
- # Load visualization package
444
- library(miaViz)
445
- # Summarize abundance of top taxa
446
- plotAbundanceDensity(tse, assay.type = "relabundance")
447
- ```
448
-
449
- ## {auto-animate="true"}
450
-
451
- ``` r
452
- # Calculate alpha diversity indices
453
- tse <- addAlpha(tse , index = " shannon" )
454
- ```
455
-
456
- ## {auto-animate="true"}
457
-
458
- ``` r
459
- # Calculate alpha diversity indices
460
- tse <- addAlpha(tse , index = " shannon" )
461
-
462
- # Load single-cell analysis package that has useful, complementary tools
463
- library(scater )
464
- # Plot alpha diversity
465
- plotColData(tse , x = " Geographical_location" , y = " shannon" )
466
- ```
467
-
468
- ``` {r}
469
- #| label: show_alpha
470
- #| fig-height: 4
471
-
472
- # Calculate alpha diversity indices
473
- tse <- addAlpha(tse, index = "shannon")
474
-
475
- # Load single-cell analysis package that has useful, complementary tools
476
- library(scater)
477
- # Plot alpha diversity
478
- plotColData(tse, x = "Geographical_location", y = "shannon")
479
- ```
480
-
481
- ## {auto-animate="true"}
482
-
483
- ``` r
484
- # Perform PCoA
485
- tse <- runMDS(tse , assay.type = " relabundance" , FUN = getDissimilarity , method = " bray" )
486
- ```
487
-
488
- ## {auto-animate="true"}
489
-
490
- ``` r
491
- # Perform PCoA
492
- tse <- runMDS(tse , assay.type = " relabundance" , FUN = getDissimilarity , method = " bray" )
493
- # Plot PCoA
494
- plotReducedDim(tse , dimred = " MDS" , colour_by = " Geographical_location" )
495
- ```
496
-
497
- ``` {r}
498
- #| label: show_pcoa
499
-
500
- # Perform PCoA
501
- tse <- runMDS(tse, assay.type = "relabundance", FUN = getDissimilarity, method = "bray")
502
- # Plot PCoA
503
- plotReducedDim(tse, dimred = "MDS", colour_by = "Geographical_location")
504
- ```
505
379
506
380
## Orchestrating Microbiome Analysis with Bioconductor
507
381
@@ -515,7 +389,7 @@ plotReducedDim(tse, dimred = "MDS", colour_by = "Geographical_location")
515
389
[ microbiome.github.io/OMA] ( https://microbiome.github.io/OMA/docs/devel/ ) {preview-link="true"}
516
390
:::
517
391
518
- ## Summary
392
+ ## Poem of the day
519
393
520
394
::: columns
521
395
::: {.column width="60%"}
@@ -525,7 +399,7 @@ _mia framework’s waiting here._
525
399
526
400
527
401
_ OMA’s guide will light the way,_
528
- _ Helping you every step of the day._
402
+ _ helping you every step of the day._
529
403
530
404
:::
531
405
0 commit comments