-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathautolabel.py
204 lines (177 loc) · 7.48 KB
/
autolabel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#!/usr/bin/env python3
import argparse
import os
import copy
import json
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
# Import Grounding DINO modules
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# Other modules
import cv2
import matplotlib.pyplot as plt
import torchvision.transforms as TT
# COCO Annotation modules (segmentation, bbox calculation)
from skimage import measure
from shapely.geometry import Polygon, MultiPolygon
import datetime
# Set GPU usage
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
########################################
# 1. Load and preprocess image
########################################
def load_image(image_path):
"""
Load an image and apply preprocessing for Grounding DINO.
"""
image_pil = Image.open(image_path).convert("RGB")
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
image_tensor, _ = transform(image_pil, None) # 3 x H x W tensor
return image_pil, image_tensor
########################################
# 2. Load the model
########################################
def load_model(model_config_path, model_checkpoint_path, device):
"""
Load the Grounding DINO model using the configuration and checkpoint files.
"""
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print("Model loading result:", load_res)
model.eval()
return model
########################################
# 3. Convert bounding box coordinates
########################################
def convert_box(box, width, height):
"""
Convert model output box (normalized [cx, cy, w, h])
to absolute pixel coordinates [x_min, y_min, x_max, y_max].
"""
cx, cy, w, h = box.tolist()
x_min = int((cx - w / 2) * width)
y_min = int((cy - h / 2) * height)
x_max = int((cx + w / 2) * width)
y_max = int((cy + h / 2) * height)
return [x_min, y_min, x_max, y_max]
########################################
# 4. Run model inference
########################################
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
"""
Run the Grounding DINO model on an image with a given caption
and return bounding boxes and predicted phrases.
"""
caption = caption.lower().strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
# Apply threshold filtering
filt_mask = logits.max(dim=1)[0] > box_threshold
logits_filt = logits[filt_mask] # num_filt x 256
boxes_filt = boxes[filt_mask] # num_filt x 4
# Extract phrases from model tokenizer
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
pred_phrases = []
for logit in logits_filt:
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
return boxes_filt, pred_phrases
########################################
# 5. Visualization functions
########################################
def show_mask(mask, ax, random_color=True):
"""
Display mask for debugging or visualization.
"""
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label):
"""
Display bounding box and label for debugging or visualization.
"""
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
ax.text(x0, y0, label, fontsize=12, color='green')
########################################
# 6. Main function
########################################
def main():
parser = argparse.ArgumentParser(
description="Run Grounding DINO on images in a directory and generate COCO-style JSON annotations."
)
parser.add_argument("target_dir", type=str, help="Directory containing image files.")
parser.add_argument("--config_file", type=str,
default="GroundingDINO/groundingdino/config/GroundingDINO_SwinB_cfg.py",
help="Model configuration file path.")
parser.add_argument("--checkpoint", type=str,
default="GroundingDINO/weights/groundingdino_swinb_cogcoor.pth",
help="Model checkpoint file path.")
parser.add_argument("--device", type=str, default="cuda",
help="Device to use (cuda or cpu).")
parser.add_argument("--text_prompt", type=str,
default="cauliflower . broccoli . zucchini",
help="Text prompt for object detection.")
parser.add_argument("--box_threshold", type=float, default=0.30,
help="Threshold for filtering bounding boxes.")
parser.add_argument("--text_threshold", type=float, default=0.25,
help="Threshold for filtering detected phrases.")
parser.add_argument("--iou_threshold", type=float, default=0.8,
help="IoU threshold for duplicate box removal.")
args = parser.parse_args()
print("Loading model...")
model = load_model(args.config_file, args.checkpoint, args.device)
print("Model loaded successfully.")
for file in os.listdir(args.target_dir):
if file.lower().endswith((".jpg", ".jpeg", ".png", ".bmp")):
image_path = os.path.join(args.target_dir, file)
print("\nProcessing:", image_path)
try:
image_pil, image_tensor = load_image(image_path)
except Exception as e:
print(f"Failed to load image: {e}")
continue
width, height = image_pil.size
boxes_filt, pred_phrases = get_grounding_output(
model, image_tensor, args.text_prompt,
args.box_threshold, args.text_threshold,
with_logits=True, device=args.device
)
if boxes_filt.shape[0] == 0:
print("No boxes detected.")
continue
boxes_abs = [convert_box(box, width, height) for box in boxes_filt]
# Save JSON output
output_json_path = os.path.join(args.target_dir, os.path.splitext(file)[0] + ".json")
with open(output_json_path, 'w') as f:
json.dump({"boxes": boxes_abs, "labels": pred_phrases}, f, indent=4)
print(f"COCO annotation saved: {output_json_path}")
if __name__ == "__main__":
main()