-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathfft_operations_test.cpp
229 lines (215 loc) · 5.5 KB
/
fft_operations_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// Codeforces Extreme Auto Tune - AC
// https://codeforces.com/group/j1UosVRZar/contest/287404/problem/E
#include <bits/stdc++.h>
#define fst first
#define snd second
#define fore(i,a,b) for(int i=a,ThxDem=b;i<ThxDem;++i)
#define pb push_back
#define ALL(s) s.begin(),s.end()
#define FIN ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define SZ(s) int(s.size())
using namespace std;
typedef long long ll;
typedef pair<int,int> ii;
// MAXN must be power of 2 !!
// MOD-1 needs to be a multiple of MAXN !!
// big mod and primitive root for NTT:
typedef int tf;
typedef vector<tf> poly;
const tf MOD=998244353,RT=3,MAXN=1<<16;
tf addmod(tf a, tf b){tf r=a+b;if(r>=MOD)r-=MOD;return r;}
tf submod(tf a, tf b){tf r=a-b;if(r<0)r+=MOD;return r;}
tf mulmod(ll a, ll b){return a*b%MOD;}
tf pm(ll a, ll b){
ll r=1;
while(b){
if(b&1) r=mulmod(r,a); b>>=1;
a=mulmod(a,a);
}
return r;
}
tf inv(tf a){return pm(a,MOD-2);}
// FFT
/*
struct CD {
double r,i;
CD(double r=0, double i=0):r(r),i(i){}
double real()const{return r;}
void operator/=(const int c){r/=c, i/=c;}
};
CD operator*(const CD& a, const CD& b){
return CD(a.r*b.r-a.i*b.i,a.r*b.i+a.i*b.r);}
CD operator+(const CD& a, const CD& b){return CD(a.r+b.r,a.i+b.i);}
CD operator-(const CD& a, const CD& b){return CD(a.r-b.r,a.i-b.i);}
const double pi=acos(-1.0);
*/
// NTT
struct CD {
tf x;
CD(tf x):x(x){}
CD(){}
};
CD operator*(const CD& a, const CD& b){return CD(mulmod(a.x,b.x));}
CD operator+(const CD& a, const CD& b){return CD(addmod(a.x,b.x));}
CD operator-(const CD& a, const CD& b){return CD(submod(a.x,b.x));}
vector<tf> rts(MAXN+9,-1);
CD root(int n, bool inv){
tf r=rts[n]<0?rts[n]=pm(RT,(MOD-1)/n):rts[n];
return CD(inv?pm(r,MOD-2):r);
}
CD cp1[MAXN+9],cp2[MAXN+9];
int R[MAXN+9];
void dft(CD* a, int n, bool inv){
fore(i,0,n)if(R[i]<i)swap(a[R[i]],a[i]);
for(int m=2;m<=n;m*=2){
//double z=2*pi/m*(inv?-1:1); // FFT
//CD wi=CD(cos(z),sin(z)); // FFT
CD wi=root(m,inv); // NTT
for(int j=0;j<n;j+=m){
CD w(1);
for(int k=j,k2=j+m/2;k2<j+m;k++,k2++){
CD u=a[k];CD v=a[k2]*w;a[k]=u+v;a[k2]=u-v;w=w*wi;
}
}
}
//if(inv)fore(i,0,n)a[i]/=n; // FFT
if(inv){ // NTT
CD z(pm(n,MOD-2)); // pm: modular exponentiation
fore(i,0,n)a[i]=a[i]*z;
}
}
poly multiply(poly& p1, poly& p2){
int n=p1.size()+p2.size()+1;
int m=1,cnt=0;
while(m<=n)m+=m,cnt++;
fore(i,0,m){R[i]=0;fore(j,0,cnt)R[i]=(R[i]<<1)|((i>>j)&1);}
fore(i,0,m)cp1[i]=0,cp2[i]=0;
fore(i,0,p1.size())cp1[i]=p1[i];
fore(i,0,p2.size())cp2[i]=p2[i];
dft(cp1,m,false);dft(cp2,m,false);
fore(i,0,m)cp1[i]=cp1[i]*cp2[i];
dft(cp1,m,true);
poly res;
n-=2;
//fore(i,0,n)res.pb((tf)floor(cp1[i].real()+0.5)); // FFT
fore(i,0,n)res.pb(cp1[i].x); // NTT
return res;
}
//Polynomial division: O(n*log(n))
//Multi-point polynomial evaluation: O(n*log^2(n))
//Polynomial interpolation: O(n*log^2(n))
//Works with NTT. For FFT, just replace addmod,submod,mulmod,inv
poly add(poly &a, poly &b){
int n=SZ(a),m=SZ(b);
poly ans(max(n,m));
fore(i,0,max(n,m)){
if(i<n) ans[i]=addmod(ans[i],a[i]);
if(i<m) ans[i]=addmod(ans[i],b[i]);
}
while(SZ(ans)>1&&!ans.back())ans.pop_back();
return ans;
}
// p % (x^n)
poly takemod(poly &p, int n){
poly res=p;
res.resize(min(SZ(res),n));
while(SZ(res)>1&&res.back()==0) res.pop_back();
return res;
}
// first d terms of 1/p
poly invert(poly &p, int d){
poly res={inv(p[0])};
int sz=1;
while(sz<d){
sz*=2;
poly pre(p.begin(), p.begin()+min(SZ(p),sz));
poly cur=multiply(res,pre);
fore(i,0,SZ(cur)) cur[i]=submod(0,cur[i]);
cur[0]=addmod(cur[0],2);
res=multiply(res,cur);
res=takemod(res,sz);
}
res.resize(d);
return res;
}
pair<poly,poly> divslow(poly &a, poly &b){
poly q,r=a;
while(SZ(r)>=SZ(b)){
q.pb(mulmod(r.back(),inv(b.back())));
if(q.back()) fore(i,0,SZ(b)){
r[SZ(r)-i-1]=submod(r[SZ(r)-i-1],mulmod(q.back(),b[SZ(b)-i-1]));
}
r.pop_back();
}
reverse(ALL(q));
return {q,r};
}
pair<poly,poly> divide(poly &a, poly &b){ //returns {quotient,remainder}
int m=SZ(a),n=SZ(b),MAGIC=750;
if(m<n) return {{0},a};
if(min(m-n,n)<MAGIC)return divslow(a,b);
poly ap=a; reverse(ALL(ap));
poly bp=b; reverse(ALL(bp));
bp=invert(bp,m-n+1);
poly q=multiply(ap,bp);
q.resize(SZ(q)+m-n-SZ(q)+1,0);
reverse(ALL(q));
poly bq=multiply(b,q);
fore(i,0,SZ(bq)) bq[i]=submod(0,bq[i]);
poly r=add(a,bq);
return {q,r};
}
vector<poly> tree;
void filltree(vector<tf> &x){
int k=SZ(x);
tree.resize(2*k);
fore(i,k,2*k) tree[i]={submod(0,x[i-k]),1};
for(int i=k-1;i;i--) tree[i]=multiply(tree[2*i],tree[2*i+1]);
}
vector<tf> evaluate(poly &a, vector<tf> &x){
filltree(x);
int k=SZ(x);
vector<poly> ans(2*k);
ans[1]=divide(a,tree[1]).snd;
fore(i,2,2*k) ans[i]=divide(ans[i>>1],tree[i]).snd;
vector<tf> r; fore(i,0,k) r.pb(ans[i+k][0]);
return r;
}
poly derivate(poly &p){
poly ans(SZ(p)-1);
fore(i,1,SZ(p)) ans[i-1]=mulmod(p[i],i);
return ans;
}
poly interpolate(vector<tf> &x, vector<tf> &y){
filltree(x);
poly p=derivate(tree[1]);
int k=SZ(y);
vector<tf> d=evaluate(p,x);
vector<poly> intree(2*k);
fore(i,k,2*k) intree[i]={mulmod(y[i-k],inv(d[i-k]))};
for(int i=k-1;i;i--){
poly p1=multiply(tree[2*i],intree[2*i+1]);
poly p2=multiply(tree[2*i+1],intree[2*i]);
intree[i]=add(p1,p2);
}
return intree[1];
}
int main(){FIN;
int m,k; cin>>m>>k;
int top=max(k,m)+2;
vector<int> x,y;
int ac=0;
fore(i,0,top){
ac=addmod(ac,pm(i,k));
x.pb(i); y.pb(ac);
}
poly p=interpolate(x,y);
vector<int> xs;
fore(i,0,m){
ll x; cin>>x; x%=MOD;
xs.pb(x);
}
while(SZ(xs)!=top) xs.pb(0);
vector<int> ans=evaluate(p,xs);
fore(i,0,m)cout<<ans[i]<<" ";cout<<"\n";
}