-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm.py
77 lines (62 loc) · 3.8 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from keras.models import Sequential
from keras.layers import Dense, Reshape, Merge, Dropout, Input
from keras.layers import LSTM as keras_lstm
from keras.layers.embeddings import Embedding
from dictionary import Dictionary
from constants import *
from model_base import ModelBase
class LSTM(ModelBase):
lstm_hidden_units = None
dropout = None
recurrent_dropout = None
number_stacked_lstms = None
mlp_hidden_units = None
adding_mlp = None
def __init__(self, dictionary : Dictionary, question_maxlen=20, embedding_vector_length=300, visual_model=True, lstm_hidden_units = 512, dropout = 0.2, recurrent_dropout = 0.2, number_stacked_lstms = 0, adding_mlp = 0, number_mlp_units = 1024):
super(LSTM, self).__init__(dictionary, question_maxlen, embedding_vector_length, visual_model)
self.lstm_hidden_units = lstm_hidden_units
self.dropout = dropout
self.recurrent_dropout = recurrent_dropout
self.number_stacked_lstms = number_stacked_lstms
self.model_name = "lstm-q_len=" + str(question_maxlen) + "-embedd_len=" + str(embedding_vector_length) + "-h_units=" \
+ str(lstm_hidden_units) +"-dropo=" + str(dropout) + "-r_dr=" + str(recurrent_dropout) + \
"-visual=" + str(visual_model) + "-stacked=" + str(number_stacked_lstms) + "-mlp_units=" + str(number_mlp_units)
self.model_type = 'lstm'
self.adding_mlp = adding_mlp
self.mlp_hidden_units = number_mlp_units
def build_visual_model(self, X, Y):
image_model = Sequential()
image_dimension = self.dictionary.pp_data.calculateImageDimension()
image_model.add(Reshape((image_dimension,), input_shape = (image_dimension,)))
language_model = Sequential()
language_model.add(Embedding(self.top_words, self.embedding_vector_length, input_length=self.question_maxlen))
for i in range(self.number_stacked_lstms - 1):
language_model.add(keras_lstm(self.lstm_hidden_units, dropout=self.dropout, recurrent_dropout=self.recurrent_dropout, return_sequences=True))
language_model.add(keras_lstm(self.lstm_hidden_units, dropout=self.dropout, recurrent_dropout=self.recurrent_dropout,
return_sequences=False))
if self.adding_mlp:
language_model.add(Dense(self.mlp_hidden_units, init='uniform', activation='tanh'))
language_model.add(Dropout(self.dropout))
model = Sequential()
model.add(Merge([language_model, image_model], mode='concat', concat_axis=1))
model.add(Dense(len(self.dictionary.labels2idx), activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
return model
def build_language_model(self, X, Y):
language_model = Sequential()
language_model.add(Embedding(self.top_words, self.embedding_vector_length, input_length=self.question_maxlen))
for i in range(self.number_stacked_lstms - 1):
language_model.add(
keras_lstm(self.lstm_hidden_units, dropout=self.dropout, recurrent_dropout=self.recurrent_dropout,
return_sequences=True))
language_model.add(
keras_lstm(self.lstm_hidden_units, dropout=self.dropout, recurrent_dropout=self.recurrent_dropout,
return_sequences=False))
if self.adding_mlp:
language_model.add(Dense(self.mlp_hidden_units, init='uniform', activation='tanh'))
language_model.add(Dropout(self.dropout))
language_model.add(Dense(len(self.dictionary.labels2idx), activation='softmax'))
language_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(language_model.summary())
return language_model