-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathslurm_seeds.sh
59 lines (50 loc) · 1.68 KB
/
slurm_seeds.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/bin/bash
# Define the arrays of hyperparameters
epochs=50000
trials=200
maxdisp_values=(20 10 5)
rewardsize_values=(2 5 10)
lr_values=(0.0 0.000001 0.00001 0.0001)
nrnn_values=(64 128 256)
loadmodel_values=(0)
gamma_values=(0.95 0.99 0.9 0.8)
# Iterate through all combinations of hyperparameters
for gamma in "${gamma_values[@]}"; do
for maxdisp in "${maxdisp_values[@]}"; do
for rewardsize in "${rewardsize_values[@]}"; do
for lr in "${lr_values[@]}"; do
for nrnn in "${nrnn_values[@]}"; do
for loadmodel in "${loadmodel_values[@]}"; do
job_name="gamma${gamma}_maxdisp${maxdisp}_rsz${rewardsize}_lr${lr}_nrnn${nrnn}_loadmodel${loadmodel}"
# Write a temporary SLURM script for each combination
cat <<EOT > temp_slurm_${job_name}.sh
#!/bin/bash
#SBATCH -J $job_name
#SBATCH -c 5
#SBATCH -t 07:00:00
#SBATCH -p seas_compute
#SBATCH --gres=gpu:0
#SBATCH --mem=5G
#SBATCH -o log_maxdisp/${job_name}_%A.%a.out
#SBATCH -e log_maxdisp/${job_name}_%A.%a.err
#SBATCH --array=0-4
eval "\$(conda shell.bash hook)"
conda activate pytorch
CMD="python -u pretrain_rnn_with_heli_server.py --epochs $epochs --trials $trials --maxdisp $maxdisp --rewardsize $rewardsize --lr $lr --gamma $gamma --nrnn $nrnn --loadmodel $loadmodel --seed \${SLURM_ARRAY_TASK_ID}"
echo \$CMD
eval \$CMD
EOT
# Submit the job and check for submission error
sbatch temp_slurm_${job_name}.sh
if [ $? -ne 0 ]; then
echo "Error submitting job $job_name"
else
# Remove the temporary SLURM script
rm temp_slurm_${job_name}.sh
fi
done
done
done
done
done
done