-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata.py
92 lines (71 loc) · 2.84 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import random
import numpy as np
import torch
from torch.tensor import Tensor
from typing import List
np.random.seed(13)
torch.random.manual_seed(13)
torch.cuda.manual_seed(13)
def sample_noise(num: int,
dim: int,
device: torch.device,
noise_type='gaussian',
noise_range=5) -> Tensor:
if noise_type == 'gaussian':
return torch.randn(num, dim, requires_grad=False, device=device)
else:
# torch.rand is uniform with interval of [0, 1)
return torch.rand(num, dim, requires_grad=False, device=device) * noise_range
def sample_1d_data(num: int,
dim: int,
device: torch.device,
mu: float = 2.0,
std: float = 0.75) -> Tensor:
return torch.tensor(np.random.normal(mu, std, size=(num, dim)),
dtype=torch.float,
requires_grad=False,
device=device)
def sample_8_gaussians(num: int, device: torch.device) -> Tensor:
_scale: float = 3.
_centers: List = [
(1, 0), (-1, 0), (0, 1), (0, -1), (1. / np.sqrt(2), 1. / np.sqrt(2)),
(1. / np.sqrt(2), -1. / np.sqrt(2)), (-1. / np.sqrt(2), 1. / np.sqrt(2)),
(-1. / np.sqrt(2), -1. / np.sqrt(2))
]
centers = [(x * _scale, y * _scale) for x, y in _centers]
data_batch: np.ndarray = np.zeros(shape=(num, 2))
for i in range(num):
point = np.random.randn(2) * .05
center = random.choice(centers)
point[0] += center[0]
point[1] += center[1]
data_batch[i] = point
data_batch /= 1.414 # stdev
return torch.tensor(data_batch, dtype=torch.float32, device=device, requires_grad=False)
def sample_25_gaussians(num: int, device: torch.device) -> Tensor:
_scale: float = 2.
_centers = []
for x in range(-2, 3):
for y in range(-2, 3):
_centers.append((x, y))
data_batch: np.ndarray = np.zeros(shape=(num, 2))
for i in range(num):
point = np.random.randn(2) * .05
x, y = random.choice(_centers)
point[0] += _scale * x
point[1] += _scale * y
data_batch[i] = point
data_batch /= 2.828 # stdev
return torch.tensor(data_batch, dtype=torch.float32, device=device, requires_grad=False)
def sample_mixture(num: int, dim: int, device: torch.device) -> Tensor:
"""Return samples from a mixture of three Gaussian."""
# mean and std of mixtures
params = [[-4.0, 0.5], [1.0, 0.5], [5.0, 0.5]]
samples = np.zeros((num, dim))
for i in range(num):
mu, std = random.choice(params)
samples[i] = np.random.normal(mu, std)
return torch.tensor(samples, dtype=torch.float32, device=device, requires_grad=False), params
def get_mixture_params():
params = [[-4.0, 0.5], [1.0, 0.5], [5.0, 0.5]]
return params